Logo

Markov Chains and Mixing Times

Large book cover: Markov Chains and Mixing Times

Markov Chains and Mixing Times
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821847392
ISBN-13: 9780821847398
Number of pages: 387

Description:
This book is an introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space. The authors develop the key tools for estimating convergence times, including coupling, strong stationary times, and spectral methods.

Home page url

Download or read it online for free here:
Download link
(4.5MB, PDF)

Similar books

Book cover: Lectures on Stochastic AnalysisLectures on Stochastic Analysis
by - University of Wisconsin
Covered topics: stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson measures, stochastic differential equations for general Markov processes.
(15036 views)
Book cover: Introduction to Randomness and StatisticsIntroduction to Randomness and Statistics
by - arXiv
This is a practical introduction to randomness and data analysis, in particular in the context of computer simulations. At the beginning, the most basics concepts of probability are given, in particular discrete and continuous random variables.
(15206 views)
Book cover: CK-12 Basic Probability and Statistics: A Short CourseCK-12 Basic Probability and Statistics: A Short Course
by - CK-12.org
CK-12 Foundation's Basic Probability and Statistics– A Short Course is an introduction to theoretical probability and data organization. Students learn about events, conditions, random variables, and graphs and tables that allow them to manage data.
(21618 views)
Book cover: Basic Data Analysis and More: A Guided Tour Using PythonBasic Data Analysis and More: A Guided Tour Using Python
by - arXiv
In these lecture notes, a selection of frequently required statistical tools will be introduced and illustrated. They allow to post-process data that stem from, e.g., large-scale numerical simulations (aka sequence of random experiments).
(15776 views)