**Gaussian Processes for Machine Learning**

by Carl E. Rasmussen, Christopher K. I. Williams

**Publisher**: The MIT Press 2005**ISBN/ASIN**: 026218253X**ISBN-13**: 9780262182539**Number of pages**: 266

**Description**:

Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Modeling Agents with Probabilistic Programs**

by

**Owain Evans, et al.**-

**AgentModels.org**

This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases. The book assumes basic programming experience.

(

**3069**views)

**Machine Learning**

by

**Abdelhamid Mellouk, Abdennacer Chebira**-

**InTech**

Neural machine learning approaches, Hamiltonian neural networks, similarity discriminant analysis, machine learning methods for spoken dialogue simulation and optimization, linear subspace learning for facial expression analysis, and more.

(

**12722**views)

**Understanding Machine Learning: From Theory to Algorithms**

by

**Shai Shalev-Shwartz, Shai Ben-David**-

**Cambridge University Press**

This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.

(

**5784**views)

**Introduction To Machine Learning**

by

**Nils J Nilsson**

This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.

(

**24285**views)