**Quasi-Projective Moduli for Polarized Manifolds**

by Eckart Viehweg

**Publisher**: Springer 1995**ISBN/ASIN**: 3540592555**ISBN-13**: 9783540592556**Number of pages**: 326

**Description**:

This book discusses two subjects of quite different nature: Construction methods for quotients of quasi-projective schemes by group actions or by equivalence relations and properties of direct images of certain sheaves under smooth morphisms. Both methods together allow to prove the central result of the text, the existence of quasi-projective moduli schemes, whose points parametrize the set of manifolds with ample canonical divisors or the set of polarized manifolds with a semi-ample canonical divisor.

Download or read it online for free here:

**Download link**

(1.5MB, PDF)

## Similar books

**Current Topics in Complex Algebraic Geometry**

by

**Herbert Clemens, János Kollár**-

**Cambridge University Press**

The 1992/93 year at the Mathematical Sciences Research Institute was devoted to Complex Algebraic Geometry. This volume collects articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change.

(

**14425**views)

**An Introduction to Semialgebraic Geometry**

by

**Michel Coste**-

**Universite de Rennes**

Semialgebraic geometry is the study of sets of real solutions of systems of polynomial equations and inequalities. These notes present the first results of semialgebraic geometry and related algorithmic issues. Their content is by no means original.

(

**13420**views)

**Mirror Symmetry**

by

**Cumrun Vafa, Eric Zaslow**-

**American Mathematical Society**

The book provides an introduction to the field of mirror symmetry from both a mathematical and physical perspective. After covering the relevant background material, the monograph is devoted to the proof of mirror symmetry from various viewpoints.

(

**14210**views)

**Analysis on Homogeneous Spaces**

by

**Ralph Howard**-

**Royal Institute of Technology Stockholm**

The main goal of these notes is to give a proof of the basic facts of harmonic analysis on compact symmetric spaces and then to apply these to concrete problems involving things such as the Radon and related transforms on these spaces.

(

**9047**views)