Logo

Quasi-Projective Moduli for Polarized Manifolds

Large book cover: Quasi-Projective Moduli for Polarized Manifolds

Quasi-Projective Moduli for Polarized Manifolds
by

Publisher: Springer
ISBN/ASIN: 3540592555
ISBN-13: 9783540592556
Number of pages: 326

Description:
This book discusses two subjects of quite different nature: Construction methods for quotients of quasi-projective schemes by group actions or by equivalence relations and properties of direct images of certain sheaves under smooth morphisms. Both methods together allow to prove the central result of the text, the existence of quasi-projective moduli schemes, whose points parametrize the set of manifolds with ample canonical divisors or the set of polarized manifolds with a semi-ample canonical divisor.

Download or read it online for free here:
Download link
(1.5MB, PDF)

Similar books

Book cover: Abelian VarietiesAbelian Varieties
by
Introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.
(13365 views)
Book cover: Lectures on An Introduction to Grothendieck's Theory of the Fundamental GroupLectures on An Introduction to Grothendieck's Theory of the Fundamental Group
by - Tata Institute of Fundamental Research
The purpose of this text is to give an introduction to Grothendieck's theory of the fundamental group in algebraic geometry with the study of the fundamental group of an algebraic curve over an algebraically closed field of arbitrary characteristic.
(11093 views)
Book cover: Lectures on Algebraic GroupsLectures on Algebraic Groups
by - University of Oregon
Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.
(14013 views)
Book cover: Stacks ProjectStacks Project
by
The stacks project aims to build up enough basic algebraic geometry as foundations for algebraic stacks. This implies a good deal of theory on commutative algebra, schemes, varieties, algebraic spaces, has to be developed en route.
(11853 views)