**Mixed Motives**

by Marc Levine

**Publisher**: American Mathematical Society 1998**ISBN/ASIN**: 0821807854**ISBN-13**: 9780821807859**Number of pages**: 91

**Description**:

This book combines foundational constructions in the theory of motives and results relating motivic cohomology to more explicit constructions. Prerequisite for understanding the work is a basic background in algebraic geometry. The author constructs and describes a triangulated category of mixed motives over an arbitrary base scheme. Most of the classical constructions of cohomology are described in the motivic setting.

Download or read it online for free here:

**Download link**

(640KB, PDF)

## Similar books

**Quasi-Projective Moduli for Polarized Manifolds**

by

**Eckart Viehweg**-

**Springer**

This book discusses two subjects of quite different nature: Construction methods for quotients of quasi-projective schemes by group actions or by equivalence relations and properties of direct images of certain sheaves under smooth morphisms.

(

**11338**views)

**Modular Functions and Modular Forms**

by

**J. S. Milne**

This is an introduction to the arithmetic theory of modular functions and modular forms, with an emphasis on the geometry. Prerequisites are the algebra and complex analysis usually covered in advanced undergraduate or first-year graduate courses.

(

**12775**views)

**Complex Analytic and Differential Geometry**

by

**Jean-Pierre Demailly**-

**Universite de Grenoble**

Basic concepts of complex geometry, coherent sheaves and complex analytic spaces, positive currents and potential theory, sheaf cohomology and spectral sequences, Hermitian vector bundles, Hodge theory, positive vector bundles, etc.

(

**18188**views)

**Algebraic Geometry over the Complex Numbers**

by

**Donu Arapura**-

**Purdue University**

Algebraic geometry is the geometric study of sets of solutions to polynomial equations over a field (or ring). In this book the author maintains a reasonable balance between rigor and intuition; so it retains the informal quality of lecture notes.

(

**13440**views)