**Elliptic Curves over Function Fields**

by Douglas Ulmer

**Publisher**: arXiv 2011**Number of pages**: 72

**Description**:

These are the notes from a course of five lectures at the 2009 Park City Math Institute. The focus is on elliptic curves over function fields over finite fields. In the first three lectures, we explain the main classical results (mainly due to Tate) on the Birch and Swinnerton-Dyer conjecture in this context and its connection to the Tate conjecture about divisors on surfaces.

Download or read it online for free here:

**Download link**

(670KB, PDF)

## Similar books

**Essays on the Theory of Numbers**

by

**Richard Dedekind**-

**The Open Court Publishing**

This is a book combining two essays: 'Continuity and irrational numbers' - Dedekind's way of defining the real numbers from rational numbers; and 'The nature and meaning of numbers' where Dedekind offers a precise explication of the natural numbers.

(

**13929**views)

**An Introduction to the Smarandache Function**

by

**Charles Ashbacher**-

**Erhus Univ Pr**

In the 1970's a Rumanian mathematician Florentin Smarandache created a new function in number theory, which consequences encompass many areas of mathematics.The purpose of this text is to examine some of those consequences.

(

**12591**views)

**Collections of Problems on Smarandache Notions**

by

**Charles Ashbacher**-

**Erhus University Press**

This text deals with some advanced consequences of the Smarandache function. The reading of this book is a form of mindjoining, where the author tries to create the opportunity for a shared experience of an adventure.

(

**17131**views)

**Harmonic Analysis, the Trace Formula, and Shimura Varieties**

by

**J. Arthur, D. Ellwood, R. Kottwitz**-

**American Mathematical Society**

The goal of this volume is to provide an entry point into the challenging field of the modern theory of automorphic forms. It is directed on the one hand at graduate students and professional mathematicians who would like to work in the area.

(

**12690**views)