Logo

Physics, Topology, Logic and Computation: A Rosetta Stone

Small book cover: Physics, Topology, Logic and Computation: A Rosetta Stone

Physics, Topology, Logic and Computation: A Rosetta Stone
by

Publisher: arXiv
Number of pages: 73

Description:
With the rise of interest in quantum cryptography and quantum computation, it became clear that there is extensive network of analogies between physics, topology, logic and computation. In this expository paper, we make some of these analogies precise using the concept of 'closed symmetric monoidal category'. We assume no prior knowledge of category theory, proof theory or computer science.

Home page url

Download or read it online for free here:
Download link
(810KB, PDF)

Download mirrors:
Mirror 1

Similar books

Book cover: Lie Theory and Special FunctionsLie Theory and Special Functions
by - Academic Press
The book studies the role played by special function theory in the formalism of mathematical physics. It demonstrates that special functions which arise in mathematical models are dictated by symmetry groups admitted by the models.
(14100 views)
Book cover: Lecture Notes on Quantum Brownian MotionLecture Notes on Quantum Brownian Motion
by - arXiv
Einstein's kinetic theory of the Brownian motion, based upon water molecules bombarding a heavy pollen, provided an explanation of diffusion from the Newtonian mechanics. It is a challenge to verify the diffusion from the Schroedinger equation.
(9677 views)
Book cover: Group TheoryGroup Theory
by - University of Lund
The text deals with basic Group Theory and its applications. Contents: Abstract Group Theory; Theory of Group Representations; Group Theory in Quantum Mechanics; Lie Groups; Atomic Physics; The Group SU2: Isospin; The Point Groups; The Group SU3.
(16497 views)
Book cover: Tensor Techniques in Physics: a concise introductionTensor Techniques in Physics: a concise introduction
by - Learning Development Institute
Contents: Linear vector spaces; Elements of tensor algebra; The tensor calculus (Volume elements, tensor densities, and volume integrals); Applications in Relativity Theory (Elements of special relativity, Tensor form of Maxwell's equations).
(13807 views)