**Algebraic K-Theory**

by Hyman Bass

**Publisher**: W. A. Benjamin 1968**ISBN/ASIN**: B0006BVKKM**Number of pages**: 793

**Description**:

The algebraic K-theory presented here is, essentially, a part of general linear algebra. It is concerned with the structure theory of projective modules, and of their automorphism groups. Thus, it is a generalization, in the most naive sense, off the theorem asserting the existence and uniqueness of bases for vector spaces, and of the group theory of the general linear group over a field.

Download or read it online for free here:

**Download link**

(35MB, PDF)

## Similar books

**Lectures on Topics in Algebraic K-Theory**

by

**Hyman Bass**-

**Tata Institute of Fundamental Research**

Topics: The exact sequence of algebraic K-theory; Categories of modules and their equivalences; The Brauer group of a commutative ring; The Brauer-Wall group of graded Azumaya algebras; The structure of the Clifford Functor.

(

**4349**views)

**An Introduction to K-theory and Cyclic Cohomology**

by

**Jacek Brodzki**-

**arXiv**

An exposition of K-theory and cyclic cohomology. It begins with examples of various situations in which the K-functor of Grothendieck appears naturally, including the topological and algebraic K-theory, K-theory of C*-algebras, and K-homology.

(

**4886**views)

**Algebraic K-Theory**

by

**Olivier Isely**-

**EPFL**

Algebraic K-theory is a branch of algebra dealing with linear algebra over a general ring A instead of over a field. Algebraic K-theory plays an important role in many subjects, especially number theory, algebraic topology and algebraic geometry.

(

**2937**views)

**18 Lectures on K-Theory**

by

**Ioannis P. Zois**-

**arXiv**

We present introductory lectures on K-Theory covering its basic three branches, namely topological, analytic and Higher Algebraic K-Theory. The skeleton of these notes was provided by the author's notes from a graduate summer school on K-Theory.

(

**4295**views)