**Algebraic K-Theory**

by Hyman Bass

**Publisher**: W. A. Benjamin 1968**ISBN/ASIN**: B0006BVKKM**Number of pages**: 793

**Description**:

The algebraic K-theory presented here is, essentially, a part of general linear algebra. It is concerned with the structure theory of projective modules, and of their automorphism groups. Thus, it is a generalization, in the most naive sense, off the theorem asserting the existence and uniqueness of bases for vector spaces, and of the group theory of the general linear group over a field.

Download or read it online for free here:

**Download link**

(35MB, PDF)

## Similar books

**An Introduction to K-theory**

by

**Eric M. Friedlander**

The author's objective was to provide participants of the Algebraic K-theory Summer School an overview of various aspects of algebraic K-theory, with the intention of making these lectures accessible with little or no prior knowledge of the subject.

(

**7375**views)

**Lectures on Topics in Algebraic K-Theory**

by

**Hyman Bass**-

**Tata Institute of Fundamental Research**

Topics: The exact sequence of algebraic K-theory; Categories of modules and their equivalences; The Brauer group of a commutative ring; The Brauer-Wall group of graded Azumaya algebras; The structure of the Clifford Functor.

(

**4832**views)

**18 Lectures on K-Theory**

by

**Ioannis P. Zois**-

**arXiv**

We present introductory lectures on K-Theory covering its basic three branches, namely topological, analytic and Higher Algebraic K-Theory. The skeleton of these notes was provided by the author's notes from a graduate summer school on K-Theory.

(

**4760**views)

**The K-book: An introduction to algebraic K-theory**

by

**Charles Weibel**-

**Rutgers**

Algebraic K-theory is an important part of homological algebra. Contents: Projective Modules and Vector Bundles; The Grothendieck group K_0; K_1 and K_2 of a ring; Definitions of higher K-theory; The Fundamental Theorems of higher K-theory.

(

**7474**views)