**Convergence of Stochastic Processes**

by D. Pollard

**Publisher**: Springer 1984**ISBN/ASIN**: 1461297583**ISBN-13**: 9781461297581**Number of pages**: 223

**Description**:

An exposition od selected parts of empirical process theory, with related interesting facts about weak convergence, and applications to mathematical statistics. The high points of the book describe the combinatorial ideas needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions.

Download or read it online for free here:

**Download link**

(8.6MB, PDF)

## Similar books

**An Introduction to Stochastic PDEs**

by

**Martin Hairer**-

**arXiv**

This text is an attempt to give a reasonably self-contained presentation of the basic theory of stochastic partial differential equations, taking for granted basic measure theory, functional analysis and probability theory, but nothing else.

(

**8031**views)

**Basic Data Analysis and More: A Guided Tour Using Python**

by

**O. Melchert**-

**arXiv**

In these lecture notes, a selection of frequently required statistical tools will be introduced and illustrated. They allow to post-process data that stem from, e.g., large-scale numerical simulations (aka sequence of random experiments).

(

**7922**views)

**Introduction Probaility and Statistics**

by

**Muhammad El-Taha**-

**University of Southern Maine**

Topics: Data Analysis; Probability; Random Variables and Discrete Distributions; Continuous Probability Distributions; Sampling Distributions; Point and Interval Estimation; Large Sample Estimation; Large-Sample Tests of Hypothesis; etc.

(

**20360**views)

**Introduction to Probability Theory and Statistics for Linguistics**

by

**Marcus Kracht**-

**UCLA**

Contents: Basic Probability Theory (Conditional Probability, Random Variables, Limit Theorems); Elements of Statistics (Estimators, Tests, Distributions, Correlation and Covariance, Linear Regression, Markov Chains); Probabilistic Linguistics.

(

**6618**views)