Convergence of Stochastic Processes
by D. Pollard
Publisher: Springer 1984
ISBN/ASIN: 1461297583
ISBN-13: 9781461297581
Number of pages: 223
Description:
An exposition od selected parts of empirical process theory, with related interesting facts about weak convergence, and applications to mathematical statistics. The high points of the book describe the combinatorial ideas needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions.
Download or read it online for free here:
Download link
(8.6MB, PDF)
Similar books

by Cosma Rohilla Shalizi
Contents: Probability (Probability Calculus, Random Variables, Discrete and Continuous Distributions); Statistics (Handling of Data, Sampling, Estimation, Hypothesis Testing); Stochastic Processes (Markov Processes, Continuous-Time Processes).
(13611 views)

by Allen B. Downey - Green Tea Press
Think Stats is an introduction to Probability and Statistics for Python programmers. This new book emphasizes simple techniques you can use to explore real data sets and answer interesting statistical questions. Basic skills in Python are assumed.
(25069 views)

by J. C. Lemm - arXiv.org
A particular Bayesian field theory is defined by combining a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.
(8329 views)

by Prasanna Sahoo - University of Louisville
This book is an introduction to probability and mathematical statistics intended for students already having some elementary mathematical background. It is intended for a one-year junior or senior level undergraduate or beginning graduate course.
(14788 views)