**Complex Integration and Cauchy's Theorem**

by G. N. Watson

**Publisher**: Cambridge University Press 1914**ISBN/ASIN**: 0486488144**Number of pages**: 100

**Description**:

This brief monograph by one of the great mathematicians of the early 20th century offers a single-volume compilation of propositions employed in proofs of Cauchy's theorem. Developing an arithmetical basis that avoids geometrical intuitions, Watson also provides a brief account of the various applications of the theorem to the evaluation of definite integrals.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**A First Course in Complex Analysis**

by

**M. Beck, G. Marchesi, D. Pixton**-

**San Francisco State University**

These are the lecture notes of a one-semester undergraduate course: complex numbers, differentiation, functions, integration, Cauchy's theorem, harmonic functions, power series, Taylor and Laurent series, isolated singularities, etc.

(

**35035**views)

**Dynamics in One Complex Variable**

by

**John Milnor**-

**Princeton University Press**

This text studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the case of rational maps of the Riemann sphere. The book introduces some key ideas in the field, and forms a basis for further study.

(

**11116**views)

**Methods for Finding Zeros in Polynomials**

by

**Leif Mejlbro**-

**BookBoon**

Polynomials are the first class of functions that the student meets. Therefore, one may think that they are easy to handle. They are not in general! Topics as e.g. finding roots in a polynomial and the winding number are illustrated.

(

**6296**views)

**Complex Analysis for Mathematics and Engineering**

by

**John H. Mathews, Russell W. Howell**-

**Jones & Bartlett Learning**

This book presents a comprehensive, student-friendly introduction to Complex Analysis concepts. Its clear, concise writing style and numerous applications make the foundations of the subject matter easily accessible to students.

(

**14643**views)