**Complex Integration and Cauchy's Theorem**

by G. N. Watson

**Publisher**: Cambridge University Press 1914**ISBN/ASIN**: 0486488144**Number of pages**: 100

**Description**:

This brief monograph by one of the great mathematicians of the early 20th century offers a single-volume compilation of propositions employed in proofs of Cauchy's theorem. Developing an arithmetical basis that avoids geometrical intuitions, Watson also provides a brief account of the various applications of the theorem to the evaluation of definite integrals.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Notes on Automorphic Functions**

by

**Anders Thorup**-

**Kobenhavns Universitet**

In mathematics, the notion of factor of automorphy arises for a group acting on a complex-analytic manifold. From the contents: Moebius transformations; Discrete subgroups; Modular groups; Automorphic forms; Poincare Series and Eisenstein Series.

(

**7278**views)

**Hyperbolic Functions**

by

**James McMahon**-

**John Wiley & Sons**

College students who wish to know something of the hyperbolic trigonometry, will find it presented in a simple and comprehensive way in the first half of the work. Readers are then introduced to the more general trigonometry of the complex plane.

(

**7528**views)

**Dynamics in One Complex Variable**

by

**John Milnor**-

**Princeton University Press**

This text studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the case of rational maps of the Riemann sphere. The book introduces some key ideas in the field, and forms a basis for further study.

(

**9171**views)

**Lectures on Holomorphic Functions of Several Complex Variables**

by

**Piotr Jakobczak, Marek Jarnicki**-

**Jagiellonian University**

The text contains the background theory of several complex variables. We discuss the extension of holomorphic functions, automorphisms, domains of holomorphy, pseudoconvexity, etc. Prerequisites are real analysis and complex analysis of one variable.

(

**2304**views)