**Complex Integration and Cauchy's Theorem**

by G. N. Watson

**Publisher**: Cambridge University Press 1914**ISBN/ASIN**: 0486488144**Number of pages**: 100

**Description**:

This brief monograph by one of the great mathematicians of the early 20th century offers a single-volume compilation of propositions employed in proofs of Cauchy's theorem. Developing an arithmetical basis that avoids geometrical intuitions, Watson also provides a brief account of the various applications of the theorem to the evaluation of definite integrals.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Lectures on The Theory of Functions of Several Complex Variables**

by

**B. Malgrange**-

**Tata Institute of Fundamental Research**

Contents: Cauchy's formula and elementary consequences; Reinhardt domains and circular domains; Complex analytic manifolds; Analytic Continuation; Envelopes of Holomorphy; Domains of Holomorphy - Convexity Theory; d''-cohomology on the cube; etc.

(

**5968**views)

**Lectures on Stratification of Complex Analytic Sets**

by

**M.-H. Schwartz**-

**Tata Institute of Fundamental Research**

Contents: Preliminaries; Some theorems on stratification; Whitney's Theorems (Tangent Cones, Wings, The singular set Sa); Whitney Stratifications and pseudofibre bundles (Pseudo fibre spaces, Obstructions in pseudo-fibrations, etc.).

(

**4844**views)

**Lectures on The Riemann Zeta-Function**

by

**K. Chandrasekharan**-

**Tata Institute of Fundamental Research**

These notes provide an intorduction to the theory of the Riemann Zeta-function for students who might later want to do research on the subject. The Prime Number Theorem, Hardy's theorem, and Hamburger's theorem are the principal results proved here.

(

**7617**views)

**Holomorphic Spaces**

by

**S. Axler, J. McCarthy, D. Sarason**-

**Cambridge University Press**

This volume consists of expository articles on holomorphic spaces. Topics covered are Hardy spaces, Bergman spaces, Dirichlet spaces, Hankel and Toeplitz operators, and a sampling of the role these objects play in modern analysis.

(

**7006**views)