Logo

Complex Integration and Cauchy's Theorem

Large book cover: Complex Integration and Cauchy's Theorem

Complex Integration and Cauchy's Theorem
by

Publisher: Cambridge University Press
ISBN/ASIN: 0486488144
Number of pages: 100

Description:
This brief monograph by one of the great mathematicians of the early 20th century offers a single-volume compilation of propositions employed in proofs of Cauchy's theorem. Developing an arithmetical basis that avoids geometrical intuitions, Watson also provides a brief account of the various applications of the theorem to the evaluation of definite integrals.

Home page url

Download or read it online for free here:
Download link
(multiple formats)

Similar books

Book cover: The Gamma FunctionThe Gamma Function
by - viXra
This book is dedicated to the subject of the Gamma function and related topics. The Gamma Function is primarily intended for advanced undergraduates in science and mathematics. The book covers each of the most important aspects of the Gamma function.
(470 views)
Book cover: Lectures on Stratification of Complex Analytic SetsLectures on Stratification of Complex Analytic Sets
by - Tata Institute of Fundamental Research
Contents: Preliminaries; Some theorems on stratification; Whitney's Theorems (Tangent Cones, Wings, The singular set Sa); Whitney Stratifications and pseudofibre bundles (Pseudo fibre spaces, Obstructions in pseudo-fibrations, etc.).
(4040 views)
Book cover: Introduction to Complex AnalysisIntroduction to Complex Analysis
by - Macquarie University
Introduction to some of the basic ideas in complex analysis: complex numbers; foundations of complex analysis; complex differentiation; complex integrals; Cauchy's integral theorem; Cauchy's integral formula; Taylor series; Laurent series; etc.
(9468 views)
Book cover: Complex AnalysisComplex Analysis
by - Kobenhavns Universitet
Contents: Holomorphic functions; Contour integrals and primitives; The theorems of Cauchy; Applications of Cauchy's integral formula; Zeros and isolated singularities; The calculus of residues; The maximum modulus principle; Moebius transformations.
(578 views)