**Thin Groups and Superstrong Approximation**

by Emmanuel Breuillard, Hee Oh (eds.)

**Publisher**: Cambridge University Press 2014**ISBN/ASIN**: 1107036852**ISBN-13**: 9781107036857**Number of pages**: 362

**Description**:

This is a collection of surveys and primarily expository articles focusing on recent developments concerning various quantitative aspects of 'thin groups'. This book provides a broad panorama of a very active field of mathematics at the boundary between geometry, dynamical systems, number theory, and combinatorics.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**An Elementary Introduction to Groups and Representations**

by

**Brian C. Hall**-

**arXiv**

An elementary introduction to Lie groups, Lie algebras, and their representations. Topics include definitions and examples of Lie groups and Lie algebras, the basics of representations theory, the Baker-Campbell-Hausdorff formula, and more.

(

**12861**views)

**Combinatorial Group Theory**

by

**Charles F. Miller III**-

**University of Melbourne**

Lecture notes for the subject Combinatorial Group Theory at the University of Melbourne. Contents: About groups; Free groups and presentations; Construction of new groups; Properties, embeddings and examples; Subgroup Theory; Decision Problems.

(

**9154**views)

**Group Theory: Birdtracks, Lie's, and Exceptional Groups**

by

**Predrag Cvitanovic**-

**Princeton University Press**

A book on the theory of Lie groups for researchers and graduate students in theoretical physics and mathematics. It answers what Lie groups preserve trilinear, quadrilinear, and higher order invariants. Written in a lively and personable style.

(

**9882**views)

**Groupoids and Smarandache Groupoids**

by

**W. B. Vasantha Kandasamy**-

**American Research Press**

This book by Dr. W. B. Vasantha aims to give a systematic development of the basic non-associative algebraic structures viz. Smarandache groupoids. Smarandache groupoids exhibits simultaneously the properties of a semigroup and a groupoid.

(

**5625**views)