Logo

Decision Making and Productivity Measurement

Small book cover: Decision Making and Productivity Measurement

Decision Making and Productivity Measurement
by

Publisher: arXiv
Number of pages: 214

Description:
I wrote this book as a self-teaching tool to assist every teacher, student, mathematician or non-mathematician for educating herself or others, and to support their understanding of the elementary concepts on assessing the performance of a set of homogenous firms, as well as how to correctly adapt mathematics to these concepts step by step, in order to underpin this area and rebuild the foundation and columns of efficiency measurement for further research.

Home page url

Download or read it online for free here:
Download link
(4.6MB, PDF)

Similar books

Book cover: Linear Complementarity, Linear and Nonlinear ProgrammingLinear Complementarity, Linear and Nonlinear Programming
by
This book provides an in-depth and clear treatment of all the important practical, technical, computational, geometric, and mathematical aspects of the Linear Complementarity Problem, Quadratic Programming, and their various applications.
(6098 views)
Book cover: Optimization Models For Decision MakingOptimization Models For Decision Making
by - Springer
This is a Junior level book on some versatile optimization models for decision making in common use. The aim of this book is to develop skills in mathematical modeling, and in algorithms and computational methods to solve and analyze these models.
(3666 views)
Book cover: Applied Mathematical Programming Using Algebraic SystemsApplied Mathematical Programming Using Algebraic Systems
by - Texas A&M University
This book is intended to both serve as a reference guide and a text for a course on Applied Mathematical Programming. The text concentrates upon conceptual issues, problem formulation, computerized problem solution, and results interpretation.
(5636 views)
Book cover: Linear ProgrammingLinear Programming
by - University of Washington
These are notes for an introductory course in linear programming. The four basic components of the course are modeling, solution methodology, duality theory, and sensitivity analysis. We focus on the simplex algorithm due to George Dantzig.
(2151 views)