**Random Matrix Theory, Interacting Particle Systems and Integrable Systems**

by Percy Deift, Peter Forrester (eds)

**Publisher**: Cambridge University Press 2014**ISBN-13**: 9781107079922**Number of pages**: 528

**Description**:

Random matrix theory is at the intersection of linear algebra, probability theory and integrable systems, and has a wide range of applications in physics, engineering, multivariate statistics and beyond. The book contains review articles and research contributions on all these topics, in addition to other core aspects of random matrix theory such as integrability and free probability theory.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Matrix Analysis**

by

**Steven J Cox**-

**Rice University**

Matrix theory is a language for representing and analyzing multivariable systems. These notes will demonstrate the role of matrices in the modeling of physical systems and the power of matrix theory in the analysis and synthesis of such systems.

(

**5424**views)

**Matrix Analysis and Algorithms**

by

**Andrew Stuart, Jochen Voss**-

**CaltechAUTHORS**

An introduction to matrix analysis, and to the basic algorithms of numerical linear algebra. Contents: Vector and Matrix Analysis; Matrix Factorisations; Stability and Conditioning; Complexity of Algorithms; Systems of Linear Equations; etc.

(

**1382**views)

**Linear Algebra Examples C-3: The Eigenvalue Problem and Euclidean Vector Space**

by

**Leif Mejlbro**-

**BookBoon**

The book is a collection of solved problems in linear algebra, this third volume covers the eigenvalue problem and Euclidean vector space. All examples are solved, and the solutions usually consist of step-by-step instructions.

(

**8988**views)

**Determinants and Matrices**

by

**R. KochendÃ¶rfer**-

**Teubner**

Basic methods and concepts are introduced. From the table of contents: Preliminaries; Determinants; Matrices; Vector spaces. Rank of a matrix; Linear Spaces; Hermitian/Quadratic forms; More about determinants and matrices; Similarity.

(

**9571**views)