Logo

Random Matrix Theory, Interacting Particle Systems and Integrable Systems

Large book cover: Random Matrix Theory, Interacting Particle Systems and Integrable Systems

Random Matrix Theory, Interacting Particle Systems and Integrable Systems
by

Publisher: Cambridge University Press
ISBN-13: 9781107079922
Number of pages: 528

Description:
Random matrix theory is at the intersection of linear algebra, probability theory and integrable systems, and has a wide range of applications in physics, engineering, multivariate statistics and beyond. The book contains review articles and research contributions on all these topics, in addition to other core aspects of random matrix theory such as integrability and free probability theory.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Linear Algebra Examples C-3: The Eigenvalue Problem and Euclidean Vector SpaceLinear Algebra Examples C-3: The Eigenvalue Problem and Euclidean Vector Space
by - BookBoon
The book is a collection of solved problems in linear algebra, this third volume covers the eigenvalue problem and Euclidean vector space. All examples are solved, and the solutions usually consist of step-by-step instructions.
(9405 views)
Book cover: Determinants and MatricesDeterminants and Matrices
by - Teubner
Basic methods and concepts are introduced. From the table of contents: Preliminaries; Determinants; Matrices; Vector spaces. Rank of a matrix; Linear Spaces; Hermitian/Quadratic forms; More about determinants and matrices; Similarity.
(10017 views)
Book cover: CirculantsCirculants
by
The goal of this book is to describe circulants in an algebraic context. It oscillates between the point of view of circulants as a commutative algebra, and the concrete point of view of circulants as matrices with emphasis on their determinants.
(9594 views)
Book cover: Toeplitz and Circulant Matrices: A reviewToeplitz and Circulant Matrices: A review
by - Now Publishers Inc
The book derives the fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements. Written for students and practicing engineers.
(11035 views)