**Geometric Transformation of Finite Element Methods: Theory and Applications**

by M. Holst, M. Licht

**Publisher**: arXiv.org 2018**Number of pages**: 21

**Description**:

We present a new technique to apply finite element methods to partial differential equations over curved domains. Our main result is that a recently developed broken Bramble-Hilbert lemma is key in harnessing regularity in the physical problem to prove higher-order finite element convergence rates for the parametric problem.

Download or read it online for free here:

**Download link**

(300KB, PDF)

## Similar books

**Numerical Analysis for Engineering**

by

**Douglas W. Harder, Richard Khoury**-

**University of Waterloo**

Contents: Error Analysis, Numeric Representation, Iteration, Linear Algebra, Interpolation, Least Squares, Taylor Series, Bracketing, The Five Techniques, Root Finding, Optimization, Differentiation, Integration, Initial-value Problems, etc.

(

**9354**views)

**Lectures on Numerical Methods in Bifurcation Problems**

by

**H.B. Keller**-

**Tata Institute Of Fundamental Research**

These lectures introduce the modern theory and practical numerical methods for continuation of solutions of nonlinear problems depending upon parameters. The treatment is elementary, advanced calculus and linear algebra are the omly prerequisites.

(

**5487**views)

**Introduction to Numerical Methods**

by

**Jeffrey R. Chasnov**-

**The Hong Kong University**

This is primarily for non-mathematics majors and is required by several engineering departments. Contents: IEEE Arithmetic; Root Finding; Systems of equations; Least-squares approximation; Interpolation; Integration; Ordinary differential equations.

(

**3309**views)

**Introduction to Fortran 95 and Numerical Computing**

by

**Adrian Sandu**-

**Virginia Tech**

Contents: a quick tour of fortran 95; the building blocks of a fortran application; flow control; computer arithmetic; applications; intrinsic functions; input and output; arrays; more on procedures; parametrized intrinsic types; derived types; etc.

(

**8472**views)