Geometric Transformation of Finite Element Methods: Theory and Applications
by M. Holst, M. Licht
Publisher: arXiv.org 2018
Number of pages: 21
Description:
We present a new technique to apply finite element methods to partial differential equations over curved domains. Our main result is that a recently developed broken Bramble-Hilbert lemma is key in harnessing regularity in the physical problem to prove higher-order finite element convergence rates for the parametric problem.
Download or read it online for free here:
Download link
(300KB, PDF)
Similar books
Lectures on Numerical Analysis
by Dennis Deturck, Herbert S. Wilf - University of Pennsylvania
Contents: Differential and Difference Equations (Linear equations with constant coefficients, Difference equations, Stability theory); The Numerical Solution of Differential Equations (Euler's method); Numerical linear algebra.
(12579 views)
by Dennis Deturck, Herbert S. Wilf - University of Pennsylvania
Contents: Differential and Difference Equations (Linear equations with constant coefficients, Difference equations, Stability theory); The Numerical Solution of Differential Equations (Euler's method); Numerical linear algebra.
(12579 views)
Templates for the Solution of Linear Systems
by Richard Barrett et al. - Society for Industrial Mathematics
The book focuses on the use of iterative methods for solving large sparse systems of linear equations. General and reusable templates are introduced to meet the needs of both the traditional user and the high-performance specialist.
(16731 views)
by Richard Barrett et al. - Society for Industrial Mathematics
The book focuses on the use of iterative methods for solving large sparse systems of linear equations. General and reusable templates are introduced to meet the needs of both the traditional user and the high-performance specialist.
(16731 views)
Iterative Methods for Sparse Linear Systems
by Yousef Saad - PWS
The book gives an in-depth, up-to-date view of practical algorithms for solving large-scale linear systems of equations. The methods described are iterative, i.e., they provide sequences of approximations that will converge to the solution.
(12153 views)
by Yousef Saad - PWS
The book gives an in-depth, up-to-date view of practical algorithms for solving large-scale linear systems of equations. The methods described are iterative, i.e., they provide sequences of approximations that will converge to the solution.
(12153 views)
Robust Geometric Computation
by Kurt Mehlhorn, Chee Yap - New York University
Contents: Introduction to Geometric Nonrobustness; Modes of Numerical Computation; Geometric Computation; Arithmetic Approaches; Geometric Approaches; Exact Geometric Computation; Perturbation; Filters; Algebraic Background; Zero Bounds; etc.
(11492 views)
by Kurt Mehlhorn, Chee Yap - New York University
Contents: Introduction to Geometric Nonrobustness; Modes of Numerical Computation; Geometric Computation; Arithmetic Approaches; Geometric Approaches; Exact Geometric Computation; Perturbation; Filters; Algebraic Background; Zero Bounds; etc.
(11492 views)