Logo

Introduction to Vectors and Tensors Volume 2: Vector and Tensor Analysis

Small book cover: Introduction to Vectors and Tensors Volume 2: Vector and Tensor Analysis

Introduction to Vectors and Tensors Volume 2: Vector and Tensor Analysis
by


ISBN/ASIN: 0306375095
Number of pages: 246

Description:
The textbook presents introductory concepts of vector and tensor analysis. Volume II begins with a discussion of Euclidean Manifolds which leads to a development of the analytical and geometrical aspects of vector and tensor fields. We have not included a discussion of general differentiable manifolds. However, we have included a chapter on vector and tensor fields defined on Hypersurfaces in a Euclidean Manifold.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Multivariable and Vector AnalysisMultivariable and Vector Analysis
by - Macquarie University
Introduction to multivariable and vector analysis: functions of several variables, differentiation, implicit and inverse function theorems, higher order derivatives, double and triple integrals, vector fields, integrals over paths, etc.
(9446 views)
Book cover: Introduction to VectorsIntroduction to Vectors
by - Bookboon
Vectors provide a fascinating tool to describe motion and forces in physics and engineering. This book takes learning to a new level by combining written notes with online video. Each lesson is linked with a YouTube video from Dr Chris Tisdell.
(5838 views)
Book cover: Vector Analysis NotesVector Analysis Notes
by - matthewhutton.com
Contents: Line Integrals; Gradient Vector Fields; Surface Integrals; Divergence of Vector Fields; Gauss Divergence Theorem; Integration by Parts; Green's Theorem; Stokes Theorem; Spherical Coordinates; Complex Differentation; Complex power series...
(3523 views)
Book cover: Vector Analysis and the Theory of RelativityVector Analysis and the Theory of Relativity
by - Johns Hopkins press
This monograph is the outcome of lectures delivered to the graduate department of mathematics of The Johns Hopkins University. Considerations of space have made it somewhat condensed in form, but the mode of presentation is sufficiently novel.
(8519 views)