**Intro to Abstract Algebra**

by Paul Garrett

1998**Number of pages**: 200

**Description**:

The text covers basic algebra of polynomials, induction and the well-ordering principle, sets, counting principles, integers, unique factorization into primes, prime numbers, Sun Ze's theorem, hood algorithm for exponentiation, Fermat's little theorem, Euler's theorem, public-key ciphers, pseudoprimes and primality tests, vectors and matrices, motions in two and three dimensions, permutations and symmetric groups, rings and fields, etc.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Elements of Abstract and Linear Algebra**

by

**Edwin H. Connell**

Covers abstract algebra in general, with the focus on linear algebra, intended for students in mathematics, physical sciences, and computer science. The presentation is compact, but still somewhat informal. The proofs of many theorems are omitted.

(

**10323**views)

**Abstract Algebra**

by

**John A. Beachy, William D. Blair**-

**Waveland**

This text contains many of the definitions and theorems from the area of mathematics called abstract algebra. It is intended for undergraduates taking an abstract algebra class, as well as for students taking their first graduate algebra course.

(

**25550**views)

**Algebra: Abstract and Concrete**

by

**Frederick M. Goodman**-

**Semisimple Press**

An introduction to modern and abstract algebra at upper undergraduate level and beginning graduate students. The book treats conventional topics: linear algebra, groups, rings, fields, and symmetry as a unifying concept.

(

**33432**views)

**Abstract Algebra I**

by

**Marcel B. Finan**-

**Arkansas Tech University**

Contents: Concept of a Mapping; Composition; Binary Operations; Composition of Mappings as a Binary Operation; Definition and Examples of Groups; Permutation Groups; Subgroups; Symmetry Groups; Equivalence Relations; The Division Algorithm; etc.

(

**6148**views)