Logo

Introduction to Complex Analysis

Small book cover: Introduction to Complex Analysis

Introduction to Complex Analysis
by

Publisher: Macquarie University
Number of pages: 194

Description:
A set of notes suitable for an introduction to some of the basic ideas in complex analysis: complex numbers; foundations of complex analysis; complex differentiation; complex integrals; Cauchy's integral theorem; Cauchy's integral formula; Taylor series, uniqueness and the maximum principle; isolated singularities and Laurent series; Cauchy's integral theorem revisited; residue theory; evaluation of definite integrals; harmonic functions and conformal mappings; Möbius transformations; Schwarz-Christoffel transformations; uniform convergence.

Download or read it online for free here:
Download link
(2.7MB, PDF)

Similar books

Book cover: Lectures on The Riemann Zeta-FunctionLectures on The Riemann Zeta-Function
by - Tata Institute of Fundamental Research
These notes provide an intorduction to the theory of the Riemann Zeta-function for students who might later want to do research on the subject. The Prime Number Theorem, Hardy's theorem, and Hamburger's theorem are the principal results proved here.
(8898 views)
Book cover: Methods for Finding Zeros in PolynomialsMethods for Finding Zeros in Polynomials
by - BookBoon
Polynomials are the first class of functions that the student meets. Therefore, one may think that they are easy to handle. They are not in general! Topics as e.g. finding roots in a polynomial and the winding number are illustrated.
(6895 views)
Book cover: Computing of the Complex Variable FunctionsComputing of the Complex Variable Functions
by - MiC
Hardware algorithms for computing of all elementary complex variable functions are proposed. Contents: A method 'digit-by-digit'; Decomposition; Compositions; Two-step-by-step operations; Taking the logarithm; Potentiation; and more.
(6588 views)
Book cover: Complex Variables: Second EditionComplex Variables: Second Edition
by - Dover Publications
The text for advanced undergraduates and graduates, it offers a concise treatment, explanations, problems and solutions. Topics include elementary theory, general Cauchy theorem and applications, analytic functions, and prime number theorem.
(13218 views)