Logo

Introduction to Complex Analysis

Small book cover: Introduction to Complex Analysis

Introduction to Complex Analysis
by

Publisher: Macquarie University
Number of pages: 194

Description:
A set of notes suitable for an introduction to some of the basic ideas in complex analysis: complex numbers; foundations of complex analysis; complex differentiation; complex integrals; Cauchy's integral theorem; Cauchy's integral formula; Taylor series, uniqueness and the maximum principle; isolated singularities and Laurent series; Cauchy's integral theorem revisited; residue theory; evaluation of definite integrals; harmonic functions and conformal mappings; Möbius transformations; Schwarz-Christoffel transformations; uniform convergence.

Download or read it online for free here:
Download link
(2.7MB, PDF)

Similar books

Book cover: Lectures On The General Theory Of Integral FunctionsLectures On The General Theory Of Integral Functions
by - Chelsea Pub. Co.
These lectures give us, in the form of a number of elegant and illuminating theorems, the latest word of mathematical science on the subject of Integral Functions. They descend to details, they take us into the workshop of the working mathematician.
(1166 views)
Book cover: Elements of the Theory of Functions of a Complex VariableElements of the Theory of Functions of a Complex Variable
by - Philadelphia G.E. Fisher
Contents: Geometric representation of imaginary quantities; Functions of a complex variable in general; Multiform functions; Integrals with complex variables; General properties of functions; Infinite and infinitesimal values of functions; etc.
(2763 views)
Book cover: Lectures on The Riemann Zeta-FunctionLectures on The Riemann Zeta-Function
by - Tata Institute of Fundamental Research
These notes provide an intorduction to the theory of the Riemann Zeta-function for students who might later want to do research on the subject. The Prime Number Theorem, Hardy's theorem, and Hamburger's theorem are the principal results proved here.
(7255 views)
Book cover: Complex AnalysisComplex Analysis
by
The textbook for an introductory course in complex analysis. It covers complex numbers and functions, integration, Cauchy's theorem, harmonic functions, Taylor and Laurent series, poles and residues, argument principle, and more.
(10648 views)