**Introduction to Complex Analysis**

by W W L Chen

**Publisher**: Macquarie University 2003**Number of pages**: 194

**Description**:

A set of notes suitable for an introduction to some of the basic ideas in complex analysis: complex numbers; foundations of complex analysis; complex differentiation; complex integrals; Cauchy's integral theorem; Cauchy's integral formula; Taylor series, uniqueness and the maximum principle; isolated singularities and Laurent series; Cauchy's integral theorem revisited; residue theory; evaluation of definite integrals; harmonic functions and conformal mappings; MÃ¶bius transformations; Schwarz-Christoffel transformations; uniform convergence.

Download or read it online for free here:

**Download link**

(2.7MB, PDF)

## Similar books

**Complex Analysis**

by

**C. McMullen**-

**Harvard University**

This course covers some basic material on both the geometric and analytic aspects of complex analysis in one variable. Prerequisites: Background in real analysis and basic differential topology, and a first course in complex analysis.

(

**7296**views)

**Methods for Finding Zeros in Polynomials**

by

**Leif Mejlbro**-

**BookBoon**

Polynomials are the first class of functions that the student meets. Therefore, one may think that they are easy to handle. They are not in general! Topics as e.g. finding roots in a polynomial and the winding number are illustrated.

(

**5042**views)

**Lectures on Holomorphic Functions of Several Complex Variables**

by

**Piotr Jakobczak, Marek Jarnicki**-

**Jagiellonian University**

The text contains the background theory of several complex variables. We discuss the extension of holomorphic functions, automorphisms, domains of holomorphy, pseudoconvexity, etc. Prerequisites are real analysis and complex analysis of one variable.

(

**2377**views)

**Complex Variables: Second Edition**

by

**R. B. Ash, W. P. Novinger**-

**Dover Publications**

The text for advanced undergraduates and graduates, it offers a concise treatment, explanations, problems and solutions. Topics include elementary theory, general Cauchy theorem and applications, analytic functions, and prime number theorem.

(

**10431**views)