Logo

Linear Functional Analysis by W W L Chen

Small book cover: Linear Functional Analysis

Linear Functional Analysis
by

Publisher: Macquarie University
Number of pages: 129

Description:
An introduction to some of the basic ideas in linear functional analysis: introduction to metric spaces; connectedness, completeness and compactness; normed vector spaces; inner product spaces; orthogonal expansions; linear functionals; introduction to linear transformations; linear transformations on Hilbert spaces; spectrum of a linear operator.

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Hilbert Spaces and Operators on Hilbert SpacesHilbert Spaces and Operators on Hilbert Spaces
by - BookBoon
Functional analysis examples. From the table of contents: Hilbert spaces; Fourier series; Construction of Hilbert spaces; Orthogonal projections and complements; Weak convergence; Operators on Hilbert spaces, general; Closed operations.
(13506 views)
Book cover: Shape Analysis, Lebesgue Integration and Absolute Continuity ConnectionsShape Analysis, Lebesgue Integration and Absolute Continuity Connections
by - arXiv.org
As shape analysis is intricately related to Lebesgue integration and absolute continuity, it is advantageous to have a good grasp of the two notions. We review basic concepts and results about Lebesgue integration and absolute continuity.
(4873 views)
Book cover: Lectures On Some Fixed Point Theorems Of Functional AnalysisLectures On Some Fixed Point Theorems Of Functional Analysis
by - Tata Institute Of Fundamental Research
The book is concerned with the application of a variety of methods to both non-linear (fixed point) problems and linear (eigenvalue) problems in infinite dimensional spaces. Author was interested in the construction of eigenvectors and eigenvalues.
(11481 views)
Book cover: Functional AnalysisFunctional Analysis
by - Lancaster University
These lecture notes are an expanded version of a set written for a course given to final-year undergraduates at the University of Oxford. A thorough understanding of Banach and Hilbert spaces is a prerequisite for this material.
(13586 views)