**Algebraic Groups and Discontinuous Subgroups**

by Armand Borel, George D. Mostow

**Publisher**: American Mathematical Society 1966**ISBN/ASIN**: 0821814095**ISBN-13**: 9780821814093**Number of pages**: 426

**Description**:

The book is concentrated around five major themes: linear algebraic groups and arithmetic groups, adeles and arithmetic properties of algebraic groups, automorphic functions and spectral decomposition of L2-spaces of coset spaces, holomorphic automorphic functions on bounded symmetric domains and moduli problems, vector valued cohomology and deformation of discrete subgroups.

Download or read it online for free here:

**Download link**

(27MB, PDF)

## Similar books

**Mirror Symmetry**

by

**Cumrun Vafa, Eric Zaslow**-

**American Mathematical Society**

The book provides an introduction to the field of mirror symmetry from both a mathematical and physical perspective. After covering the relevant background material, the monograph is devoted to the proof of mirror symmetry from various viewpoints.

(

**7319**views)

**Lectures on Moduli of Curves**

by

**D. Gieseker**-

**Tata Institute of Fundamental Research**

These lecture notes are based on some lectures given in 1980. The object of the lectures was to construct a projective moduli space for stable curves of genus greater than or equal two using Mumford's geometric invariant theory.

(

**4455**views)

**Introduction to Algebraic Geometry**

by

**Sudhir R. Ghorpade**-

**Indian Institute of Technology Bombay**

This text is a brief introduction to algebraic geometry. We will focus mainly on two basic results in algebraic geometry, known as Bezout's Theorem and Hilbert's Nullstellensatz, as generalizations of the Fundamental Theorem of Algebra.

(

**4523**views)

**Determinantal Rings**

by

**Winfried Bruns, Udo Vetter**-

**Springer**

Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. The book gives a coherent treatment of the structure of determinantal rings. The approach is via the theory of algebras with straightening law.

(

**5620**views)