Introduction to Symplectic and Hamiltonian Geometry
by Ana Cannas da Silva
2007
Number of pages: 158
Description:
This text covers foundations of symplectic geometry in a modern language. We start by describing symplectic manifolds and their transformations, and by explaining connections to topology and other geometries. Next we study hamiltonian fields, hamiltonian actions and some of their practical applications in the context of mechanics and dynamical systems. We assume previous knowledge of the geometry of smooth manifolds, though the main required facts are collected in appendices.
Download or read it online for free here:
Download link
(810KB, PDF)
Similar books

by Hansjoerg Geiges - arXiv
This is an introductory text on the more topological aspects of contact geometry. After discussing some of the fundamental results of contact topology, I move on to a detailed exposition of the original proof of the Lutz-Martinet theorem.
(12547 views)

by Riccardo Benedetti - arXiv.org
This text is a comprehensive introduction to the theory of smooth manifolds, maps, and fundamental associated structures. It is geared toward beginning master's and doctoral students with an undergraduate mathematics background.
(627 views)

by Bjorn Ian Dundas - Johns Hopkins University
This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.
(11945 views)

by Karl-Hermann Neeb - FAU Erlangen-Nuernberg
From the table of contents: Basic Concepts (The concept of a fiber bundle, Coverings, Morphisms...); Bundles and Cocycles; Cohomology of Lie Algebras; Smooth G-valued Functions; Connections on Principal Bundles; Curvature; Perspectives.
(10916 views)