Introduction to Symplectic and Hamiltonian Geometry

Introduction to Symplectic and Hamiltonian Geometry

Number of pages: 158

This text covers foundations of symplectic geometry in a modern language. We start by describing symplectic manifolds and their transformations, and by explaining connections to topology and other geometries. Next we study hamiltonian fields, hamiltonian actions and some of their practical applications in the context of mechanics and dynamical systems. We assume previous knowledge of the geometry of smooth manifolds, though the main required facts are collected in appendices.

Home page url

Download or read it online for free here:
Download link
(810KB, PDF)

Similar books

Book cover: Differential Topology and Morse TheoryDifferential Topology and Morse Theory
by - University of Sheffield
These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.
Book cover: Introduction to Differential Topology, de Rham Theory and Morse TheoryIntroduction to Differential Topology, de Rham Theory and Morse Theory
by - Radboud University
Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.
Book cover: Differential TopologyDifferential Topology
by - Johns Hopkins University
This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.
Book cover: Contact TopologyContact Topology
by - University of Texas at Austin
This is a course on contact manifolds, which are odd dimensional manifolds with an extra structure called a contact structure. Most of our study will focus on three dimensional manifolds, though many of these notions hold for any odd dimension.