Logo

Introduction to Symplectic and Hamiltonian Geometry

Introduction to Symplectic and Hamiltonian Geometry
by


Number of pages: 158

Description:
This text covers foundations of symplectic geometry in a modern language. We start by describing symplectic manifolds and their transformations, and by explaining connections to topology and other geometries. Next we study hamiltonian fields, hamiltonian actions and some of their practical applications in the context of mechanics and dynamical systems. We assume previous knowledge of the geometry of smooth manifolds, though the main required facts are collected in appendices.

Home page url

Download or read it online for free here:
Download link
(810KB, PDF)

Similar books

Book cover: Introduction to Differential TopologyIntroduction to Differential Topology
by - Boise State University
This is a preliminary version of introductory lecture notes for Differential Topology. We try to give a deeper account of basic ideas of differential topology than usual in introductory texts. Many examples of manifolds are worked out in detail.
(5279 views)
Book cover: Manifolds of Differentiable MappingsManifolds of Differentiable Mappings
by - Birkhauser
This book is devoted to the theory of manifolds of differentiable mappings and contains result which can be proved without the help of a hard implicit function theorem of nuclear function spaces. All the necessary background is developed in detail.
(5239 views)
Book cover: Lecture Notes on Differentiable ManifoldsLecture Notes on Differentiable Manifolds
by - National University of Singapore
Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; etc.
(6958 views)
Book cover: Differential Topology of Fiber BundlesDifferential Topology of Fiber Bundles
by - FAU Erlangen-Nuernberg
From the table of contents: Basic Concepts (The concept of a fiber bundle, Coverings, Morphisms...); Bundles and Cocycles; Cohomology of Lie Algebras; Smooth G-valued Functions; Connections on Principal Bundles; Curvature; Perspectives.
(4806 views)