**Introduction to Symplectic and Hamiltonian Geometry**

by Ana Cannas da Silva

2007**Number of pages**: 158

**Description**:

This text covers foundations of symplectic geometry in a modern language. We start by describing symplectic manifolds and their transformations, and by explaining connections to topology and other geometries. Next we study hamiltonian fields, hamiltonian actions and some of their practical applications in the context of mechanics and dynamical systems. We assume previous knowledge of the geometry of smooth manifolds, though the main required facts are collected in appendices.

Download or read it online for free here:

**Download link**

(810KB, PDF)

## Similar books

**Differential Topology and Morse Theory**

by

**Dirk Schuetz**-

**University of Sheffield**

These notes describe basic material about smooth manifolds (vector fields, flows, tangent bundle, partitions of unity, Whitney embedding theorem, foliations, etc...), introduction to Morse theory, and various applications.

(

**6731**views)

**Introduction to Differential Topology, de Rham Theory and Morse Theory**

by

**Michael Muger**-

**Radboud University**

Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.

(

**7326**views)

**Differential Topology**

by

**Bjorn Ian Dundas**-

**Johns Hopkins University**

This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.

(

**6805**views)

**Contact Topology**

by

**George Torres, Robert Gompf**-

**University of Texas at Austin**

This is a course on contact manifolds, which are odd dimensional manifolds with an extra structure called a contact structure. Most of our study will focus on three dimensional manifolds, though many of these notions hold for any odd dimension.

(

**307**views)