Monte Carlo: Basics
by K. P. N. Murthy
Publisher: arXiv 2001
Number of pages: 76
Description:
An introduction to the basics of Monte Carlo is given. The topics covered include, sample space, events, probabilities, random variables, mean, variance, covariance, characteristic function, chebyshev inequality, law of large numbers, central limit theorem (stable distribution, Levy distribution), random numbers (generation and testing), random sampling techniques (inversion, rejection, sampling from a Gaussian, Metropolis sampling), analogue Monte Carlo and Importance sampling (exponential biasing, spanier technique).
Download or read it online for free here:
Download link
(560KB, PDF)
Similar books

by Eric Ayars - California State University, Chico
Contents: Useful Introductory Python; Python Basics; Basic Numerical Tools; Numpy, Scipy, and MatPlotLib; Ordinary Differential Equations; Chaos; Monte Carlo Techniques; Stochastic Methods; Partial Differential Equations; Linux; Visual Python; etc.
(12210 views)

by Angus MacKinnon - Imperial College London
This course aims to give the student a thorough grounding in the main computational techniques used in modern physics. This is not a text in computing science, nor in programming. It focuses specifically on methods for solving physics problems.
(14631 views)

by Jeffrey R. Chasnov - Harvey Mudd College
This course consists of both numerical methods and computational physics. MATLAB is used to solve various computational math problems. The course is primarily for Math majors and supposes no previous knowledge of numerical analysis or methods.
(9545 views)

by Konstantinos Anagnostopoulos - National Technical University of Athens
This is an introduction to the computational methods used in physics and other scientific fields. It is addressed to an audience that has already been exposed to the introductory level of college physics, usually taught during the first two years...
(10044 views)