**Combinatorial and Computational Geometry**

by J. E. Goodman, J. Pach, E. Welzl

**Publisher**: Cambridge University Press 2007**ISBN/ASIN**: 0521848628**ISBN-13**: 9780521848626**Number of pages**: 616

**Description**:

This volume includes surveys and research articles exploring geometric arrangements, polytopes, packing, covering, discrete convexity, geometric algorithms and their complexity, and the combinatorial complexity of geometric objects, particularly in low dimension. There are points of contact with many applied areas such as mathematical programming, visibility problems, kinetic data structures, and biochemistry, and with algebraic topology, geometric probability, real algebraic geometry, and combinatorics.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Convex Geometric Analysis**

by

**Keith Ball, Vitali Milman**-

**Cambridge University Press**

Convex bodies are at once simple and amazingly rich in structure. This collection involves researchers in classical convex geometry, geometric functional analysis, computational geometry, and related areas of harmonic analysis.

(

**8051**views)

**Topics in Finite Geometry: Ovals, Ovoids and Generalized Quadrangles**

by

**S. E. Payne**-

**University of Colorado Denver**

The present book grew out of notes written for a course by the same name taught by the author during in 2005. Only some basic abstract algebra, linear algebra, and mathematical maturity are the prerequisites for reading this book.

(

**9433**views)

**Origami and Geometric Constructions**

by

**Robert J. Lang**

Origami is the art of folding sheets of paper into interesting and beautiful shapes. In this text the author presents a variety of techniques for origami geometric constructions. The field has surprising connections to other branches of mathematics.

(

**8289**views)

**Geometric Theorems and Arithmetic Functions**

by

**Jozsef Sandor**-

**American Research Press**

Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.

(

**12458**views)