Logo

Combinatorial and Computational Geometry

Large book cover: Combinatorial and Computational Geometry

Combinatorial and Computational Geometry
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521848628
ISBN-13: 9780521848626
Number of pages: 616

Description:
This volume includes surveys and research articles exploring geometric arrangements, polytopes, packing, covering, discrete convexity, geometric algorithms and their complexity, and the combinatorial complexity of geometric objects, particularly in low dimension. There are points of contact with many applied areas such as mathematical programming, visibility problems, kinetic data structures, and biochemistry, and with algebraic topology, geometric probability, real algebraic geometry, and combinatorics.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Origami and Geometric ConstructionsOrigami and Geometric Constructions
by
Origami is the art of folding sheets of paper into interesting and beautiful shapes. In this text the author presents a variety of techniques for origami geometric constructions. The field has surprising connections to other branches of mathematics.
(14969 views)
Book cover: An Introduction to GeometryAn Introduction to Geometry
by - National University of Singapore
Contents: A Brief History of Greek Mathematics; Basic Results in Book I of the Elements; Triangles; Quadrilaterals; Concurrence; Collinearity; Circles; Using Coordinates; Inversive Geometry; Models and Basic Results of Hyperbolic Geometry.
(15855 views)
Book cover: Modern GeometryModern Geometry
by - University of South Carolina
This course is a study of modern geometry as a logical system based upon postulates and undefined terms. Projective geometry, theorems of Desargues and Pappus, transformation theory, affine geometry, Euclidean, non-Euclidean geometries, topology.
(15844 views)
Book cover: The Fourth DimensionThe Fourth Dimension
by - S. Sonnenschein & Co.
C. H. Hinton discusses the subject of the higher dimensionality of space, his aim being to avoid mathematical subtleties and technicalities, and thus enable his argument to be followed by readers who are not sufficiently conversant with mathematics.
(6953 views)