**Combinatorial and Computational Geometry**

by J. E. Goodman, J. Pach, E. Welzl

**Publisher**: Cambridge University Press 2007**ISBN/ASIN**: 0521848628**ISBN-13**: 9780521848626**Number of pages**: 616

**Description**:

This volume includes surveys and research articles exploring geometric arrangements, polytopes, packing, covering, discrete convexity, geometric algorithms and their complexity, and the combinatorial complexity of geometric objects, particularly in low dimension. There are points of contact with many applied areas such as mathematical programming, visibility problems, kinetic data structures, and biochemistry, and with algebraic topology, geometric probability, real algebraic geometry, and combinatorics.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Geometric Theorems and Arithmetic Functions**

by

**Jozsef Sandor**-

**American Research Press**

Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.

(

**18407**views)

**Projective Geometry**

by

**Nigel Hitchin**

The techniques of projective geometry provide the technical underpinning for perspective drawing and in particular for the modern version of the Renaissance artist, who produces the computer graphics we see every day on the web.

(

**18793**views)

**Fractal Geometry**

by

**Michael Frame, Benoit Mandelbrot, Nial Neger**-

**Yale University**

This is an introduction to fractal geometry for students without especially strong mathematical preparation, or any particular interest in science. Each of the topics contains examples of fractals in the arts, humanities, or social sciences.

(

**16086**views)

**Geometry and the Imagination**

by

**Conway, Doyle, Thurston**-

**Rutgers University, Newark**

These are notes from an experimental mathematics course entitled Geometry and the Imagination as developed by Conway, Doyle, Thurston and others. The course aims to convey the richness, diversity, connectedness, depth and pleasure of mathematics.

(

**5894**views)