**Computational Physics**

by Angus MacKinnon

**Publisher**: Imperial College London 2002**Number of pages**: 48

**Description**:

This course aims to give the student a thorough grounding in the main computational techniques used in modern physics. This is not a text in computing science, nor in programming. It focuses specifically on methods for solving physics problems.

Download or read it online for free here:

**Download link**

(HTML, PDF)

## Similar books

**Solution Methods In Computational Fluid Dynamics**

by

**T. H. Pulliam**-

**NASA**

Implicit finite difference schemes for solving two dimensional and three dimensional Euler and Navier-Stokes equations will be addressed. The methods are demonstrated in fully vectorized codes for a CRAY type architecture.

(

**8190**views)

**Introduction to Monte Carlo Methods**

by

**Stefan Weinzierl**-

**arXiv**

These lectures given to graduate students in high energy physics, provide an introduction to Monte Carlo methods. After an overview of classical numerical quadrature rules, Monte Carlo integration and variance-reducing techniques is introduced.

(

**6591**views)

**High Performance Computing and Numerical Modelling**

by

**Volker Springel**-

**arXiv**

These are lecture notes about high performance computing and numerical modelling in 43rd Saas Fee Advanced Course winter school, specifically covering the basics of numerically treating gravity and hydrodynamics in the context of galaxy evolution.

(

**4517**views)

**Monte Carlo: Basics**

by

**K. P. N. Murthy**-

**arXiv**

An introduction to the basics of Monte Carlo is given. The topics covered include sample space, events, probabilities, random variables, mean, variance, covariance, characteristic function, chebyshev inequality, law of large numbers, etc.

(

**8814**views)