**Lectures on Stochastic Analysis**

by Thomas G. Kurtz

**Publisher**: University of Wisconsin 2007**Number of pages**: 119

**Description**:

The course will introduce stochastic integrals with respect to general semimartingales, stochastic differential equations based on these integrals, integration with respect to Poisson random measures, stochastic differential equations for general Markov processes, change of measure, and applications to finance, filtering and control. The intention has been to state the theorems correctly with all hypotheses, but no attempt has been made to include detailed proofs.

Download or read it online for free here:

**Download link**

(700KB, PDF)

## Similar books

**Markov Chains and Mixing Times**

by

**D. A. Levin, Y. Peres, E. L. Wilmer**-

**American Mathematical Society**

An introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space.

(

**15083**views)

**A defense of Columbo: A multilevel introduction to probabilistic reasoning**

by

**G. D'Agostini**-

**arXiv**

Triggered by a recent interesting article on the too frequent incorrect use of probabilistic evidence in courts, the author introduces the basic concepts of probabilistic inference with a toy model, and discusses several important issues.

(

**17374**views)

**Inverse Problem Theory and Methods for Model Parameter Estimation**

by

**Albert Tarantola**-

**SIAM**

The first part deals with discrete inverse problems with a finite number of parameters, while the second part deals with general inverse problems. The book for scientists and applied mathematicians facing the interpretation of experimental data.

(

**17929**views)

**Correlation and Causality**

by

**David A. Kenny**-

**John Wiley & Sons Inc**

This text is a general introduction to the topic of structural analysis. It presumes no previous acquaintance with causal analysis. It is general because it covers all the standard, as well as a few nonstandard, statistical procedures.

(

**17441**views)