**Random Matrix Models and Their Applications**

by Pavel Bleher, Alexander Its

**Publisher**: Cambridge University Press 2001**ISBN/ASIN**: 0521802091**ISBN-13**: 9780521802093**Number of pages**: 438

**Description**:

The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems. Its focus on the interaction between physics and mathematics will make it a welcome addition to the shelves of graduate students and researchers in both fields, as will its expository emphasis.

Download or read it online for free here:

**Download link**

(multiple PDF,PS files)

## Similar books

**Bayesian Field Theory**

by

**J. C. Lemm**-

**arXiv.org**

A particular Bayesian field theory is defined by combining a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.

(

**1314**views)

**Inverse Problem Theory and Methods for Model Parameter Estimation**

by

**Albert Tarantola**-

**SIAM**

The first part deals with discrete inverse problems with a finite number of parameters, while the second part deals with general inverse problems. The book for scientists and applied mathematicians facing the interpretation of experimental data.

(

**11387**views)

**Bayesian Spectrum Analysis and Parameter Estimation**

by

**G. Larry Bretthorst**-

**Springer**

This work is a research document on the application of probability theory to the parameter estimation problem. The people who will be interested in this material are physicists, economists, and engineers who have to deal with data on a daily basis.

(

**12025**views)

**Basic Data Analysis and More: A Guided Tour Using Python**

by

**O. Melchert**-

**arXiv**

In these lecture notes, a selection of frequently required statistical tools will be introduced and illustrated. They allow to post-process data that stem from, e.g., large-scale numerical simulations (aka sequence of random experiments).

(

**9024**views)