Logo

Theory of the Integral by Stanislaw Saks

Large book cover: Theory of the Integral

Theory of the Integral
by

Publisher: Polish Mathematical Society
ISBN/ASIN: 0486446484
Number of pages: 347

Description:
Covering all the standard topics, the author begins with a discussion of the integral in an abstract space, additive classes of sets, measurable functions, and integration of sequences of functions. Succeeding chapters cover Caratheodory measure; functions of bounded variation and the Lebesgue-Stieltjes integral; the derivation of additive functions of a set and of an interval; and more.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Introduction to Methods of Applied MathematicsIntroduction to Methods of Applied Mathematics
by - Caltech
Advanced mathematical methods for scientists and engineers, it contains material on calculus, functions of a complex variable, ordinary differential equations, partial differential equations and the calculus of variations.
(10969 views)
Book cover: Semi-classical analysisSemi-classical analysis
by - Harvard University
In semi-classical analysis many of the basic results involve asymptotic expansions in which the terms can by computed by symbolic techniques and the focus of these lecture notes will be the 'symbol calculus' that this creates.
(6663 views)
Book cover: Lectures on Disintegration of MeasuresLectures on Disintegration of Measures
by - Tata Institute of Fundamental Research
These Notes cover I) disintegration of a measure with respect to a single sigma-algebra, and in part II, measure valued supermartingales and regular disintegration of a measure with respect to an increasing right continuous family of sigma-algebras.
(4413 views)
Book cover: Introduction to AnalysisIntroduction to Analysis
by - Reed College
Students learn to write proofs while at the same time learning about binary operations, orders, fields, ordered fields, complete fields, complex numbers, sequences, and series. We also review limits, continuity, differentiation, and integration.
(1803 views)