Logo

The basic paradoxes of statistical classical physics and quantum mechanics

Small book cover: The basic paradoxes of statistical classical physics and quantum mechanics

The basic paradoxes of statistical classical physics and quantum mechanics
by

Publisher: arXiv
Number of pages: 180

Description:
The statistical classical mechanics and the quantum mechanics are two developed and well-known theories. Nevertheless, they contain a number of paradoxes. It forces many scientists to doubt internal consistency of these theories. However the given paradoxes can be resolved within the framework of the existing physics, without introduction of new laws.

Home page url

Download or read it online for free here:
Download link
(2.4MB, PDF)

Similar books

Book cover: An Introduction to Many Worlds in Quantum ComputationAn Introduction to Many Worlds in Quantum Computation
by - arXiv
This paper introduces one interpretation of quantum mechanics, a modern 'many-worlds' theory, from the perspective of quantum computation. Reasons for seeking to interpret quantum mechanics are discussed, then the specific theory is introduced.
(8559 views)
Book cover: Quantum mechanics: An intermediate level courseQuantum mechanics: An intermediate level course
by - Lulu.com
Lecture notes for an upper-division quantum mechanics course: fundamental concepts, one-dimensional potentials, central potentials, angular momentum, the hydrogen atom, time-independent perturbation theory, time-dependent perturbation theory, etc.
(10354 views)
Book cover: Do we really understand quantum mechanics?Do we really understand quantum mechanics?
by - Zuckschwerdt Publishers
A discussion of several aspects of our present understanding of quantum mechanics. The emphasis is put on the special correlations that this theory makes possible: they are forbidden by very general arguments based on realism and local causality.
(7864 views)
Book cover: Quantum MechanicsQuantum Mechanics
by - Universit├Ąt Ulm
Contents: Wave Mechanics; Fundamental Concepts of Quantum Mechanics; Quantum Dynamics; Angular Momentum; Approximation Methods; Symmetry in Quantum Mechanics; Theory of chemical bonding; Scattering Theory; Relativistic Quantum Mechanics.
(9808 views)