Logo

Clifford Algebra, Geometric Algebra, and Applications

Small book cover: Clifford Algebra, Geometric Algebra, and Applications

Clifford Algebra, Geometric Algebra, and Applications
by

Publisher: arXiv
Number of pages: 117

Description:
These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra.

Home page url

Download or read it online for free here:
Download link
(960KB, PDF)

Similar books

Book cover: The Construction and Study of Certain Important AlgebrasThe Construction and Study of Certain Important Algebras
by - The Mathematical Society Of Japan
This is the reproduction of the beautiful lectures delivered by Professor C. Chevalley at the University of Tokyo in April-June 1954. Contents: Graded algebras; Tensor algebras; Clifford algebras; Some applications of exterior algebras.
(5774 views)
Book cover: Smarandache Near-ringsSmarandache Near-rings
by - American Research Press
Near-rings are one of the generalized structures of rings. This is a book on Smarandache near-rings where the Smarandache analogues of the near-ring concepts are developed. The reader is expected to have a background in algebra and in near-rings.
(8456 views)
Book cover: Abstract Algebra: The Basic Graduate YearAbstract Algebra: The Basic Graduate Year
by
Text for a graduate course in abstract algebra, it covers fundamental algebraic structures (groups, rings, fields, modules), and maps between them. The text is written in conventional style, the book can be used as a classroom text or as a reference.
(13982 views)
Book cover: The OctonionsThe Octonions
by - University of California
The octonions are the largest of the four normed division algebras. The author describes them and their relation to Clifford algebras and spinors, Bott periodicity, projective and Lorentzian geometry, Jordan algebras, and the exceptional Lie groups.
(14251 views)