Logo

Clifford Algebra, Geometric Algebra, and Applications

Small book cover: Clifford Algebra, Geometric Algebra, and Applications

Clifford Algebra, Geometric Algebra, and Applications
by

Publisher: arXiv
Number of pages: 117

Description:
These are lecture notes for a course on the theory of Clifford algebras, with special emphasis on their wide range of applications in mathematics and physics. Clifford algebra is introduced both through a conventional tensor algebra construction with geometric applications in mind, as well as in an algebraically more general form which is well suited for combinatorics, and for defining and understanding the numerous products and operations of the algebra.

Home page url

Download or read it online for free here:
Download link
(960KB, PDF)

Similar books

Book cover: Workbook in Higher AlgebraWorkbook in Higher Algebra
by
A set of notes for a Higher Algebra course. It covers Group Theory, Field and Galois Theory, Elementary Factorization Theory, Dedekind Domains, Module Theory, Ring Structure Theory, Tensor Products, Zorn’s Lemma and some Applications.
(10932 views)
Book cover: Smarandache Semirings, Semifields and Semivector SpacesSmarandache Semirings, Semifields and Semivector Spaces
by - American Research Press
This is the first book on the Smarandache algebraic structures that have two binary operations. Semirings are algebraic structures with two binary operations enjoying several properties and it is the most generalized structure.
(7898 views)
Book cover: Lie AlgebrasLie Algebras
by
The Campbell Baker Hausdorff formula, sl(2) and its representations, classical simple algebras, Engel-Lie-Cartan-Weyl, conjugacy of Cartan subalgebras, simple finite dimensional algebras, cyclic highest weight modules, Serre’s theorem, and more.
(12273 views)
Book cover: An Introduction to Nonassociative AlgebrasAn Introduction to Nonassociative Algebras
by - Project Gutenberg
Concise study presents in a short space some of the important ideas and results in the theory of nonassociative algebras, with particular emphasis on alternative and (commutative) Jordan algebras. Written as an introduction for graduate students.
(8639 views)