**Short introduction to Nonstandard Analysis**

by E. E. Rosinger

**Publisher**: arXiv 2004**Number of pages**: 197

**Description**:

These lecture notes offer a short and rigorous introduction to Nostandard Analysis, mainly aimed to reach to a presentation of the basics of Loeb integration, and in particular, Loeb measures. The Abraham Robinson version of Nostandard Analysis is pursued, with a respective incursion into Superstructures. Two formal languages are used, one simpler at first, and then later, one for the full blown theory.

Download or read it online for free here:

**Download link**

(830KB, PDF)

## Similar books

**Linear Mathematics In Infinite Dimensions**

by

**U. H. Gerlach**-

**The Ohio State University**

Contents: Infinite Dimensional Vector Spaces; Fourier Theory; Sturm-Liouville Theory; Green's Function Theory; Special Function Theory; Partial Differential Equations; System of Partial Differential Equations: How to Solve Maxwell's Equations ...

(

**8343**views)

**Special Functions and Their Symmetries: Postgraduate Course in Applied Analysis**

by

**Vadim Kuznetsov, Vladimir Kisil**-

**University of Leeds**

This text presents fundamentals of special functions theory and its applications in partial differential equations of mathematical physics. The course covers topics in harmonic, classical and functional analysis, and combinatorics.

(

**14502**views)

**Nonstandard Analysis**

by

**J. Ponstein**

This book is concerned with an attempt to introduce the infinitesimals and the other 'nonstandard' numbers in a naive, simpleminded way. Nevertheless, the resulting theory is hoped to be mathematically sound, and to be complete within obvious limits.

(

**11589**views)

**Jacobi Operators and Complete Integrable Nonlinear Lattices**

by

**Gerald Teschl**-

**American Mathematical Society**

Introduction and a reference to spectral and inverse spectral theory of Jacobi operators and applications of these theories to the Toda and Kac-van Moerbeke hierarchy. It covers second order difference equations, self-adjoint operators, etc.

(

**12114**views)