An Introduction to Complex Algebraic Geometry
by Chris Peters
Publisher: Institut Fourier Grenoble 2004
Number of pages: 129
Description:
The material presented here consists of a more or less self-contained advanced course in complex algebraic geometry presupposing only some familiarity with the theory of algebraic curves or Riemann surfaces. But the goal, as in the lectures, is to understand the Enriques classification of surfaces from the point of view of Mori-theory.
Download or read it online for free here:
Download link
(790KB, PDF)
Similar books

by Claude Sabbah - arXiv
The purpose of these lectures is to introduce the notion of a Stokes-perverse sheaf as a receptacle for the Riemann-Hilbert correspondence for holonomic D-modules. They develop the original idea of P. Deligne in dimension one.
(9670 views)

by Arthur Ogus - University of California, Berkeley
Logarithmic geometry deals with two problems in algebraic geometry: compactification and degeneration. Contents: The geometry of monoids; Log structures and charts; Morphisms of log schemes; Differentials and smoothness; De Rham and Betti cohomology.
(13299 views)

by Eckart Viehweg - Springer
This book discusses two subjects of quite different nature: Construction methods for quotients of quasi-projective schemes by group actions or by equivalence relations and properties of direct images of certain sheaves under smooth morphisms.
(10838 views)

by S. Basu, R. Pollack, M. Roy - Springer
The monograph gives a detailed exposition of the algorithmic real algebraic geometry. It is well written and will be useful both for beginners and for advanced readers, who work in real algebraic geometry or apply its methods in other fields.
(17382 views)