**Applied Mathematical Programming**

by S. Bradley, A. Hax, T. Magnanti

**Publisher**: Addison-Wesley 1977**ISBN/ASIN**: 020100464X**ISBN-13**: 9780201004649**Number of pages**: 716

**Description**:

This book shows you how to model a wide array of problems, and explains the mathematical algorithms and techniques behind the modeling. Covered are topics such as linear programming, duality theory, sensitivity analysis, network/dynamic programming, integer programming, non-linear programming, and my favorite, large-scale problems modeling/solving, etc.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Optimization Algorithms: Methods and Applications**

by

**Ozgur Baskan (ed.)**-

**InTech**

This book covers state-of-the-art optimization methods and their applications in wide range especially for researchers and practitioners who wish to improve their knowledge in this field. It covers applications in engineering and various other areas.

(

**6229**views)

**Decision Making and Productivity Measurement**

by

**Dariush Khezrimotlagh**-

**arXiv**

I wrote this book as a self-teaching tool to assist every teacher, student, mathematician or non-mathematician, and to support their understanding of the elementary concepts on assessing the performance of a set of homogenous firms ...

(

**5725**views)

**Optimization Models For Decision Making**

by

**Katta G. Murty**-

**Springer**

This is a Junior level book on some versatile optimization models for decision making in common use. The aim of this book is to develop skills in mathematical modeling, and in algorithms and computational methods to solve and analyze these models.

(

**10072**views)

**Data Assimilation: A Mathematical Introduction**

by

**K.J.H. Law, A.M. Stuart, K.C. Zygalakis**-

**arXiv.org**

This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation. Authors develop a framework in which a Bayesian formulation of the problem provides the bedrock for the derivation and analysis of algorithms.

(

**4736**views)