Introduction to Quantum Integrability
by A. Doikou, S. Evangelisti, G. Feverati, N. Karaiskos
Publisher: arXiv 2010
Number of pages: 56
Description:
The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. The associated algebras are essentially described by the Yang-Baxter and boundary Yang-Baxter equations depending on the choice of boundary conditions.
Download or read it online for free here:
Download link
(390KB, PDF)
Similar books

by Max Lein - arXiv
These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.
(9968 views)

by S.R.S. Varadhan - Tata Institute of Fundamental Research
Starting from Brownian Motion, the lectures quickly got into the areas of Stochastic Differential Equations and Diffusion Theory. The section on Martingales is based on additional lectures given by K. Ramamurthy of the Indian Institute of Science.
(10127 views)

by Karl Svozil - Edition Funzl
This book presents the course material for mathemathical methods of theoretical physics intended for an undergraduate audience. The author most humbly presents his own version of what is important for standard courses of contemporary physics.
(11978 views)

by P. G. Ciarlet - Tata Institute of Fundamental Research
In this book a non-linear system of partial differential equations will be established as a mathematical model of elasticity. An energy functional will be established and existence results will be studied in the second chapter.
(10357 views)