Introduction to Quantum Integrability

Small book cover: Introduction to Quantum Integrability

Introduction to Quantum Integrability

Publisher: arXiv
Number of pages: 56

The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. The associated algebras are essentially described by the Yang-Baxter and boundary Yang-Baxter equations depending on the choice of boundary conditions.

Home page url

Download or read it online for free here:
Download link
(390KB, PDF)

Similar books

Book cover: LieART: A Mathematica Application for Lie Algebras and Representation TheoryLieART: A Mathematica Application for Lie Algebras and Representation Theory
by - arXiv
We present the Mathematica application LieART (Lie Algebras and Representation Theory) for computations in Lie Algebras and representation theory, such as tensor product decomposition and subalgebra branching of irreducible representations.
Book cover: Mathematical Physics IIMathematical Physics II
by - SISSA
These are lecture notes on various topics in analytic theory of differential equations: Singular points of solutions to analytic differential equations; Monodromy of linear differential operators with rational coefficients.
Book cover: Introduction to Spectral Theory of Schrödinger OperatorsIntroduction to Spectral Theory of Schrödinger Operators
by - Vinnitsa State Pedagogical University
Contents: Operators in Hilbert spaces; Spectral theorem of self-adjoint operators; Compact operators and the Hilbert-Schmidt theorem; Perturbation of discrete spectrum; Variational principles; One-dimensional Schroedinger operator; etc.
Book cover: Lectures on the Singularities of the Three-Body ProblemLectures on the Singularities of the Three-Body Problem
by - Tata Institute of Fundamental Research
From the table of contents: The differential equations of mechanics; The three-body problem : simple collisions (The n-body problem); The three-body problem: general collision (Stability theory of solutions of differential equations).