Logo

Smarandache Near-rings by W. B. Vasantha Kandasamy

Large book cover: Smarandache Near-rings

Smarandache Near-rings
by

Publisher: American Research Press
ISBN/ASIN: 1931233667
ISBN-13: 9781931233668
Number of pages: 201

Description:
Near-rings are one of the generalized structures of rings. This is a book on Smarandache near-rings where the Smarandache analogues of the near-ring concepts are developed. The reader is expected to have a good background both in algebra and in near-rings; for, several results are to be proved by the reader as an exercise.

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: An Introduction to the Algebra of QuanticsAn Introduction to the Algebra of Quantics
by - The Clarendon Press
The primary object of this book is that of explaining with all the clearness at my command the leading principles of invariant algebra, in the hope of making it evident to the junior student that the subject is attractive as well as important.
(7088 views)
Book cover: Infinite-dimensional Lie AlgebrasInfinite-dimensional Lie Algebras
by - University of Edinburgh
Contents: Central extensions; Virasoro algebra; Heisenberg algebra; Enveloping algebras; Hands-on loop and affine algebras; Simple Lie algebras; Kac-Moody Lie algebras; Dynkin diagrams; Forms, Weyl groups and roots; Root spaces; Affine Lie algebras.
(9433 views)
Book cover: Clifford Algebra, Geometric Algebra, and ApplicationsClifford Algebra, Geometric Algebra, and Applications
by - arXiv
These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.
(10572 views)
Book cover: Set Theoretic Approach to Algebraic Structures in MathematicsSet Theoretic Approach to Algebraic Structures in Mathematics
by - Educational Publisher
This book brings out how sets in algebraic structures can be used to construct the most generalized algebraic structures, like set linear algebra / vector space, set ideals in groups and rings and semigroups, and topological set vector spaces.
(7496 views)