Lectures on Etale Cohomology
by J. S. Milne
2008
Number of pages: 196
Description:
These are the notes for a course taught at the University of Michigan in 1989 and 1998. The emphasis is on heuristic arguments rather than formal proofs and on varieties rather than schemes. The notes also discuss the proof of the Weil conjectures (Grothendieck and Deligne).
Download or read it online for free here:
Download link
(1.2MB, PDF)
Similar books
A Primer on Homotopy Colimits
by Daniel Dugger - University of Oregon
This is an expository paper on homotopy colimits and homotopy limits. These are constructions which should arguably be in the toolkit of every modern algebraic topologist. Many proofs are avoided, or perhaps just sketched.
(10350 views)
by Daniel Dugger - University of Oregon
This is an expository paper on homotopy colimits and homotopy limits. These are constructions which should arguably be in the toolkit of every modern algebraic topologist. Many proofs are avoided, or perhaps just sketched.
(10350 views)
Lectures on Introduction to Algebraic Topology
by G. de Rham - Tata Institute of Fundamental Research
These notes were intended as a first introduction to algebraic Topology. Contents: Definition and general properties of the fundamental group; Free products of groups and their quotients; On calculation of fundamental groups; and more.
(10142 views)
by G. de Rham - Tata Institute of Fundamental Research
These notes were intended as a first introduction to algebraic Topology. Contents: Definition and general properties of the fundamental group; Free products of groups and their quotients; On calculation of fundamental groups; and more.
(10142 views)
Topology Lecture Notes
by Thomas Ward - UEA
Contents: Topological and Metric Spaces, Homotopy Exquivalence, Fundamental Groups, Covering Spaces and Applications, Classification of Surfaces, Simplicial Complexes and Homology Groups, Homology Calculations, Simplicial Approximation, etc.
(12243 views)
by Thomas Ward - UEA
Contents: Topological and Metric Spaces, Homotopy Exquivalence, Fundamental Groups, Covering Spaces and Applications, Classification of Surfaces, Simplicial Complexes and Homology Groups, Homology Calculations, Simplicial Approximation, etc.
(12243 views)
The Classification Theorem for Compact Surfaces
by Jean Gallier, Dianna Xu
In this book the authors present the technical tools needed for proving rigorously the classification theorem, give a detailed proof using these tools, and also discuss the history of the theorem and its various proofs.
(15261 views)
by Jean Gallier, Dianna Xu
In this book the authors present the technical tools needed for proving rigorously the classification theorem, give a detailed proof using these tools, and also discuss the history of the theorem and its various proofs.
(15261 views)