Introduction to Linear Bialgebra

Large book cover: Introduction to Linear Bialgebra

Introduction to Linear Bialgebra

Publisher: arXiv
ISBN/ASIN: 1931233977
ISBN-13: 9781931233972
Number of pages: 238

This book has for the first time, introduced a new algebraic structure called linear bialgebra, which is also a very powerful algebraic tool that can yield itself to applications. With the recent introduction of bimatrices (2005)we have ventured in this book to introduce new concepts like linear bialgebra and Smarandache neutrosophic linear bialgebra and also give the applications of these algebraic structures.

Home page url

Download or read it online for free here:
Download link
(840KB, PDF)

Similar books

Book cover: Set Linear Algebra and Set Fuzzy Linear AlgebraSet Linear Algebra and Set Fuzzy Linear Algebra
by - InfoLearnQuest
Set linear algebras, introduced by the authors in this book, are the most generalized form of linear algebras. These structures make use of very few algebraic operations and are easily accessible to non-mathematicians as well.
Book cover: Linear Algebra Review and ReferenceLinear Algebra Review and Reference
by - Stanford University
From the tabble of contents: Basic Concepts and Notation; Matrix Multiplication; Operations and Properties; Matrix Calculus (Gradients and Hessians of Quadratic and Linear Functions, Least Squares, Eigenvalues as Optimization, etc.).
Book cover: Linear Algebra, Infinite Dimensions, and MapleLinear Algebra, Infinite Dimensions, and Maple
by - Georgia Tech
These notes are about linear operators on Hilbert Spaces. The text is an attempt to provide a way to understand the ideas without the students already having the mathematical maturity that a good undergraduate analysis course could provide.
Book cover: Lectures on Linear Algebra and MatricesLectures on Linear Algebra and Matrices
by - Texas A&M University
Contents: Vectors and Vector Spaces; Matrices and Linear Algebra; Eigenvalues and Eigenvectors; Unitary Matrices; Hermitian Theory; Normal Matrices; Factorization Theorems; Jordan Normal Form; Hermitian and Symmetric Matrices; Nonnegative Matrices.