**Lectures on complex geometry, Calabi-Yau manifolds and toric geometry**

by Vincent Bouchard

**Publisher**: arXiv 2007**Number of pages**: 63

**Description**:

These are introductory lecture notes on complex geometry, Calabi-Yau manifolds and toric geometry. We first define basic concepts of complex and Kahler geometry. We then proceed with an analysis of various definitions of Calabi-Yau manifolds. The last section provides a short introduction to toric geometry.

Download or read it online for free here:

**Download link**

(530KB, PDF)

## Similar books

**The Geometrization of Physics**

by

**Richard S. Palais**-

**University of California at Irvine**

The major goal of these notes is to develop an observation that not only can gauge fields of the Yang-Mills type be unified with the Einstein model of gravitation, but also that when this unification is made they are described by pure geometry.

(

**7580**views)

**An Introduction to Noncommutative Spaces and their Geometry**

by

**Giovanni Landi**-

**arXiv**

These lectures notes are an introduction for physicists to several ideas and applications of noncommutative geometry. The necessary mathematical tools are presented in a way which we feel should be accessible to physicists.

(

**7458**views)

**Introduction to Braided Geometry and q-Minkowski Space**

by

**Shahn Majid**-

**arXiv**

Systematic introduction to the geometry of linear braided spaces. These are versions of Rn in which the coordinates xi have braid-statistics described by an R-matrix. From this starting point we survey the author's braided-approach to q-deformation.

(

**4363**views)

**Geometry of Quantum Mechanics**

by

**Ingemar Bengtsson**-

**Stockholms universitet, Fysikum**

These are the lecture notes from a graduate course in the geometry of quantum mechanics. The idea was to introduce the mathematics in its own right, but not to introduce anything that is not directly relevant to the subject.

(

**8681**views)