Logo

Lectures on complex geometry, Calabi-Yau manifolds and toric geometry

Small book cover: Lectures on complex geometry, Calabi-Yau manifolds and toric geometry

Lectures on complex geometry, Calabi-Yau manifolds and toric geometry
by

Publisher: arXiv
Number of pages: 63

Description:
These are introductory lecture notes on complex geometry, Calabi-Yau manifolds and toric geometry. We first define basic concepts of complex and Kahler geometry. We then proceed with an analysis of various definitions of Calabi-Yau manifolds. The last section provides a short introduction to toric geometry.

Home page url

Download or read it online for free here:
Download link
(530KB, PDF)

Similar books

Book cover: Differential Geometry in PhysicsDifferential Geometry in Physics
by - University of North Carolina at Wilmington
These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.
(14365 views)
Book cover: The Geometrization of PhysicsThe Geometrization of Physics
by - University of California at Irvine
The major goal of these notes is to develop an observation that not only can gauge fields of the Yang-Mills type be unified with the Einstein model of gravitation, but also that when this unification is made they are described by pure geometry.
(9453 views)
Book cover: Noncommutative GeometryNoncommutative Geometry
by - Academic Press
The definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics. Ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics.
(9795 views)
Book cover: Lectures on the Geometry of QuantizationLectures on the Geometry of Quantization
by - University of California at Berkeley
An introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role which these ideas play in formalizing the transition between the mathematics of classical dynamics and that of quantum mechanics.
(9133 views)