Logo

Introduction to the Field Theory of Classical and Quantum Phase Transitions

Small book cover: Introduction to the Field Theory of Classical and Quantum Phase Transitions

Introduction to the Field Theory of Classical and Quantum Phase Transitions
by

Publisher: arXiv
Number of pages: 178

Description:
These lecture notes provide a relatively self-contained introduction to field theoretic methods employed in the study of classical and quantum phase transitions. Classical phase transitions occur at a regime where quantum fluctuations do not play an important role, usually at high enough temperatures.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Thermodynamics and Statistical Mechanics of Small SystemsThermodynamics and Statistical Mechanics of Small Systems
by - MDPI AG
Applications of the thermodynamic and statistical mechanics of small systems range from molecular biology to micro-mechanics, including models of nano-transport, Brownian motors, and (living or artificial) self-propelled organisms.
(7227 views)
Book cover: Statistical PhysicsStatistical Physics
by - University of Vienna
This web tutorial was devised as a tool for teaching Statistical Physics to second year students. Topics covered: Why is water wet? Elements of Kinetic Theory; Phase space; Statistical Thermodynamics; Statistical Quantum Mechanics.
(10846 views)
Book cover: Statistical Mechanics NotesStatistical Mechanics Notes
by - New Mexico Tech
From the table of contents: Fundamental Principles of Statistical Physics; Selected Applications (Classical Systems, Ideal Fermi Gas, Ideal Bose Gas, Black Body Radiation, Relativistic Degenerate Electron Gas); Introduction to Kinetic Theory.
(10386 views)
Book cover: Introduction to the theory of stochastic processes and Brownian motion problemsIntroduction to the theory of stochastic processes and Brownian motion problems
by - arXiv
Contents: Stochastic variables; Stochastic processes and Markov processes; The master equation; The Langevin equation; Linear response theory, dynamical susceptibilities, and relaxation times; Langevin and Fokker–Planck equations; etc.
(10072 views)