Logo

Introduction to the Field Theory of Classical and Quantum Phase Transitions

Small book cover: Introduction to the Field Theory of Classical and Quantum Phase Transitions

Introduction to the Field Theory of Classical and Quantum Phase Transitions
by

Publisher: arXiv
Number of pages: 178

Description:
These lecture notes provide a relatively self-contained introduction to field theoretic methods employed in the study of classical and quantum phase transitions. Classical phase transitions occur at a regime where quantum fluctuations do not play an important role, usually at high enough temperatures.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: An Introduction to Monte Carlo Simulations in Statistical PhysicsAn Introduction to Monte Carlo Simulations in Statistical Physics
by - arXiv
A brief introduction to the technique of Monte Carlo simulations in statistical physics. The topics covered include statistical ensembles random and pseudo random numbers, random sampling techniques, importance sampling, Markov chain, etc.
(7241 views)
Book cover: Statistical Mechanics of Nonequilibrium LiquidsStatistical Mechanics of Nonequilibrium Liquids
by - ANU E Press
The book charts the development and theoretical analysis of molecular dynamics as applied to equilibrium and non-equilibrium systems. It connects molecular dynamics simulation with the mathematical theory to understand non-equilibrium steady states.
(6742 views)
Book cover: Exactly Solved Models in Statistical MechanicsExactly Solved Models in Statistical Mechanics
by - Academic Press
This text explores the solution of two-dimensional lattice models. Topics include basic statistical mechanics, Ising models, mean field model, spherical model, ice-type models, corner transfer matrices, hard hexagonal models, and elliptic functions.
(6559 views)
Book cover: Lecture Notes in Statistical Mechanics and MesoscopicsLecture Notes in Statistical Mechanics and Mesoscopics
by - arXiv
These are notes for quantum and statistical mechanics courses. Topics covered: master equations; non-equilibrium processes; fluctuation theorems; linear response theory; adiabatic transport; the Kubo formalism; scattering approach to mesoscopics.
(4128 views)