**Evolution of Networks**

by S.N. Dorogovtsev, J.F.F. Mendes

**Publisher**: arXiv 2001**Number of pages**: 67

**Description**:

We review the recent fast progress in statistical physics of evolving networks. Interest has focused mainly on the structural properties of random complex networks in communications, biology, social sciences and economics. A number of giant artificial networks of such a kind came into existence recently. This opens a wide field for the study of their topology, evolution, and complex processes occurring in them.

Download or read it online for free here:

**Download link**

(1.2MB, PDF)

## Similar books

**Homogeneous Boltzmann Equation in Quantum Relativistic Kinetic Theory**

by

**M. Escobedo, S. Mischler, M.A. Valle**-

**American Mathematical Society**

We consider some mathematical questions about Boltzmann equations for quantum particles, relativistic or non relativistic. Relevant cases such as Bose, Bose-Fermi, and photon-electron gases are studied. We also consider some simplifications ...

(

**4199**views)

**Novel Dynamical Phenomena In Magnetic Systems**

by

**Soham Biswas**-

**arXiv**

Dynamics of Ising models is a much studied phenomenon and has emerged as a rich field of present-day research. An important dynamical feature commonly studied is the quenching phenomenon below the critical temperature ...

(

**1138**views)

**Statistical Physics**

by

**Franz J. Vesely**-

**University of Vienna**

This web tutorial was devised as a tool for teaching Statistical Physics to second year students. Topics covered: Why is water wet? Elements of Kinetic Theory; Phase space; Statistical Thermodynamics; Statistical Quantum Mechanics.

(

**5385**views)

**Statistical Mechanics and the Physics of the Many-Particle Model Systems**

by

**A. L. Kuzemsky**-

**arXiv**

The development of methods of quantum statistical mechanics is considered in light of their applications to quantum solid-state theory. We discuss fundamental problems of the physics of magnetic materials and methods of quantum theory of magnetism.

(

**5940**views)