Logo

Think Stats: Probability and Statistics for Programmers

Small book cover: Think Stats: Probability and Statistics for Programmers

Think Stats: Probability and Statistics for Programmers
by

Publisher: Green Tea Press
Number of pages: 122

Description:
Think Stats is an introduction to Probability and Statistics for Python programmers. This new book emphasizes simple techniques you can use to explore real data sets and answer interesting statistical questions. Basic skills in Python are assumed.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Inverse Problem Theory and Methods for Model Parameter EstimationInverse Problem Theory and Methods for Model Parameter Estimation
by - SIAM
The first part deals with discrete inverse problems with a finite number of parameters, while the second part deals with general inverse problems. The book for scientists and applied mathematicians facing the interpretation of experimental data.
(13318 views)
Book cover: Markov Chains and Mixing TimesMarkov Chains and Mixing Times
by - American Mathematical Society
An introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space.
(11252 views)
Book cover: Bayesian Field TheoryBayesian Field Theory
by - arXiv.org
A particular Bayesian field theory is defined by combining a likelihood model, providing a probabilistic description of the measurement process, and a prior model, providing the information necessary to generalize from training to non-training data.
(3546 views)
Book cover: A defense of Columbo: A multilevel introduction to probabilistic reasoningA defense of Columbo: A multilevel introduction to probabilistic reasoning
by - arXiv
Triggered by a recent interesting article on the too frequent incorrect use of probabilistic evidence in courts, the author introduces the basic concepts of probabilistic inference with a toy model, and discusses several important issues.
(13131 views)