**Introduction to Differential Topology**

by Uwe Kaiser

**Publisher**: Boise State University 2006**Number of pages**: 110

**Description**:

This is a preliminary version of introductory lecture notes for Differential Topology. We try to give a deeper account of basic ideas of differential topology than usual in introductory texts. Also many more examples of manifolds like matrix groups and Grassmannians are worked out in detail.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Introduction to Symplectic and Hamiltonian Geometry**

by

**Ana Cannas da Silva**

The text covers foundations of symplectic geometry in a modern language. It describes symplectic manifolds and their transformations, and explains connections to topology and other geometries. It also covers hamiltonian fields and hamiltonian actions.

(

**9555**views)

**Symplectic Geometry**

by

**Ana Cannas da Silva**-

**Princeton University**

An overview of symplectic geometry – the geometry of symplectic manifolds. From a language of classical mechanics, symplectic geometry became a central branch of differential geometry and topology. This survey gives a partial flavor on this field.

(

**8455**views)

**Introduction to Differential Topology, de Rham Theory and Morse Theory**

by

**Michael Muger**-

**Radboud University**

Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.

(

**6957**views)

**Differential Topology**

by

**Bjorn Ian Dundas**-

**Johns Hopkins University**

This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.

(

**6327**views)