**Mathematics for Physics: A Guided Tour for Graduate Students**

by Michael Stone, Paul Goldbart

**Publisher**: Cambridge University Press 2009**ISBN/ASIN**: 0521854032**Number of pages**: 919

**Description**:

An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics - differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables.

Download or read it online for free here:

**Download link**

(5.3MB, PDF)

## Similar books

**Harmonic Oscillators and Two-by-two Matrices in Symmetry Problems in Physics**

by

**Young Suh Kim (ed.)**-

**MDPI AG**

With a degree of exaggeration, modern physics is the physics of harmonic oscillators and two-by-two matrices. Indeed, they constitute the basic language for the symmetry problems in physics, and thus the main theme of this journal.

(

**1291**views)

**Classical and Quantum Mechanics via Lie algebras**

by

**Arnold Neumaier, Dennis Westra**-

**arXiv**

This book presents classical, quantum, and statistical mechanics in an algebraic setting, thereby introducing mathematicians, physicists, and engineers to the ideas relating classical and quantum mechanics with Lie algebras and Lie groups.

(

**8467**views)

**Floer Homology, Gauge Theory, and Low Dimensional Topology**

by

**David Ellwood, at al.**-

**American Mathematical Society**

Mathematical gauge theory studies connections on principal bundles. The book provides an introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.

(

**7861**views)

**A Window into Zeta and Modular Physics**

by

**Klaus Kirsten, Floyd L. Williams**-

**Cambridge University Press**

This book provides an introduction, with applications, to three interconnected mathematical topics: zeta functions in their rich variety; modular forms; vertex operator algebras. Applications of the material to physics are presented.

(

**5796**views)