Logo

Higher Topos Theory by Jacob Lurie

Large book cover: Higher Topos Theory

Higher Topos Theory
by

Publisher: Princeton University Press
ISBN/ASIN: 0691140499
ISBN-13: 9780691140490
Number of pages: 943

Description:
Jacob Lurie presents the foundations of higher category theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.

Home page url

Download or read it online for free here:
Download link
(3.9MB, PDF)

Similar books

Book cover: Banach Modules and Functors on Categories of Banach SpacesBanach Modules and Functors on Categories of Banach Spaces
by - Marcel Dekker Inc
This book is the final outgrowth of a sequence of seminars about functors on categories of Banach spaces (held 1971 - 1975) and several doctoral dissertations. It has been written for readers with a general background in functional analysis.
(5129 views)
Book cover: Category Theory: A Gentle IntroductionCategory Theory: A Gentle Introduction
by - Logic Matters
I hope that what is here may prove useful to others starting to get to grips with category theory. This text is intended to be relatively accessible; in particular, it presupposes rather less mathematical background than some texts on categories.
(1981 views)
Book cover: Basic Category TheoryBasic Category Theory
by - arXiv
This introduction to category theory is for readers with relatively little mathematical background. At its heart is the concept of a universal property, important throughout mathematics. For each new concept a generous supply of examples is provided.
(1649 views)
Book cover: Basic Concepts of Enriched Category TheoryBasic Concepts of Enriched Category Theory
by - Cambridge University Press
The book presents a selfcontained account of basic category theory, assuming as prior knowledge only the most elementary categorical concepts. It is designed to supply a connected account of the theory, or at least of a substantial part of it.
(8145 views)