Logo

Higher Topos Theory by Jacob Lurie

Large book cover: Higher Topos Theory

Higher Topos Theory
by

Publisher: Princeton University Press
ISBN/ASIN: 0691140499
ISBN-13: 9780691140490
Number of pages: 943

Description:
Jacob Lurie presents the foundations of higher category theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.

Home page url

Download or read it online for free here:
Download link
(3.9MB, PDF)

Similar books

Book cover: A Gentle Introduction to Category Theory: the calculational approachA Gentle Introduction to Category Theory: the calculational approach
by - University of Twente
These notes present the important notions from category theory. The intention is to provide a fairly good skill in manipulating with those concepts formally. This text introduces category theory in the calculational style of the proofs.
(19715 views)
Book cover: Functors and Categories of Banach SpacesFunctors and Categories of Banach Spaces
by - Springer
The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way.
(11199 views)
Book cover: Higher Operads, Higher CategoriesHigher Operads, Higher Categories
by - arXiv
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from topology, quantum algebra, mathematical physics, logic, and computer science.
(13015 views)
Book cover: Category Theory for ProgrammersCategory Theory for Programmers
by - unglue.it
Category theory is the kind of math that is particularly well suited for the minds of programmers. It deals with the kind of structure that makes programs composable. And I will argue strongly that composition is the essence of programming.
(7585 views)