**Higher Topos Theory**

by Jacob Lurie

**Publisher**: Princeton University Press 2009**ISBN/ASIN**: 0691140499**ISBN-13**: 9780691140490**Number of pages**: 943

**Description**:

Jacob Lurie presents the foundations of higher category theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.

Download or read it online for free here:

**Download link**

(3.9MB, PDF)

## Similar books

**A Gentle Introduction to Category Theory: the calculational approach**

by

**Maarten M. Fokkinga**-

**University of Twente**

These notes present the important notions from category theory. The intention is to provide a fairly good skill in manipulating with those concepts formally. This text introduces category theory in the calculational style of the proofs.

(

**19715**views)

**Functors and Categories of Banach Spaces**

by

**Peter W. Michor**-

**Springer**

The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way.

(

**11199**views)

**Higher Operads, Higher Categories**

by

**Tom Leinster**-

**arXiv**

Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from topology, quantum algebra, mathematical physics, logic, and computer science.

(

**13015**views)

**Category Theory for Programmers**

by

**Bartosz Milewski**-

**unglue.it**

Category theory is the kind of math that is particularly well suited for the minds of programmers. It deals with the kind of structure that makes programs composable. And I will argue strongly that composition is the essence of programming.

(

**7585**views)