Logo

Lecture Notes in Statistical Mechanics and Mesoscopics

Small book cover: Lecture Notes in Statistical Mechanics and Mesoscopics

Lecture Notes in Statistical Mechanics and Mesoscopics
by

Publisher: arXiv
Number of pages: 119

Description:
These are the lecture notes for quantum and statistical mechanics courses that are given by DC at Ben-Gurion University. Topics covered: introduction to master equations; non-equilibrium processes; fluctuation theorems; linear response theory; adiabatic transport; the Kubo formalism; and the scattering approach to mesoscopics.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Lecture Notes in Statistical MechanicsLecture Notes in Statistical Mechanics
by - The J. Stefan Institute
These lectures cover classical and quantum statistical mechanics with some emphasis on classical spin systems. The author gives also an introduction to Bose condensation and superfluidity but he does not discuss phenomena specific to Fermi particles.
(5780 views)
Book cover: Thermodynamic Limit in Statistical PhysicsThermodynamic Limit in Statistical Physics
by - arXiv
The thermodynamic limit in statistical thermodynamics of many-particle systems is an important issue. We review the past and present disposition of thermodynamic limiting procedure in the structure of the contemporary statistical mechanics ...
(2825 views)
Book cover: Time-related Issues in Statistical MechanicsTime-related Issues in Statistical Mechanics
by - Clarkson University
Topics covered: The description of apparent of irreversibility; Physical origins of the arrow(s) of time; Two-time boundary value problems; The micro / macro distinction and coarse graining; Quantum mechanics with special states.
(6813 views)
Book cover: Lecture Notes on Thermodynamics and Statistical MechanicsLecture Notes on Thermodynamics and Statistical Mechanics
by - University of California, San Diego
Contents: Probability 2. Thermodynamics 3. Ergodicity and the Approach to Equilibrium 4. Statistical Ensembles 5. Noninteracting Quantum Systems 6. Classical Interacting Systems 7. Mean Field Theory of Phase Transitions 8. Nonequilibrium Phenomena.
(5174 views)