A Primer of Commutative Algebra
by J.S. Milne
2011
Number of pages: 75
Description:
These notes prove the basic theorems in commutative algebra required for algebraic geometry and algebraic groups. They assume only a knowledge of the algebra usually taught in advanced undergraduate or first-year graduate courses. However, they are quite concise.
Download or read it online for free here:
Download link
(690KB, PDF)
Similar books

by Keerthi Madapusi - Harvard University
Contents: Graded Rings and Modules; Flatness; Integrality: the Cohen-Seidenberg Theorems; Completions and Hensel's Lemma; Dimension Theory; Invertible Modules and Divisors; Noether Normalization and its Consequences; Quasi-finite Algebras; etc.
(12578 views)

by Luchezar L. Avramov, at al. - Cambridge University Press
This book focuses on the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology and representation theory, and combinatorics, with all necessary background provided.
(11931 views)

by Jacob Lurie, Akhil Mathew - Harvard University
Topics: Unique factorization; Basic definitions; Rings of holomorphic functions; R-modules; Ideals; Localization; SpecR and Zariski topology; The ideal class group; Dedekind domains; Hom and the tensor product; Exactness; Projective modules; etc.
(12551 views)

by Sudhir R. Ghorpade - Indian Institute of Technology, Bombay
These notes give a rapid review of the rudiments of classical commutative algebra. Some of the main results whose proofs are outlined here are: Hilbert basis theorem, primary decomposition of ideals in noetherian rings, Krull intersection theorem.
(11437 views)