**Matrices**

by Shmuel Friedland

**Publisher**: University of Illinois at Chicago 2010**Number of pages**: 437

**Description**:

From the table of contents: Domains, Modules and Matrices; Canonical Forms for Similarity; Functions of Matrices and Analytic Similarity; Inner product spaces; Elements of Multilinear Algebra; Nonnegative matrices; Convexity.

Download or read it online for free here:

**Download link**

(1.8MB, PDF)

## Similar books

**Introduction to Bimatrices**

by

**W. B. V. Kandasamy, F. Smarandache, K. Ilanthenral**-

**arXiv**

This book introduces the concept of bimatrices, and studies several notions like bieigen values, bieigen vectors, characteristic bipolynomials, bitransformations, bioperators and bidiagonalization. The concepts of fuzzy bimatrices is introduced.

(

**7867**views)

**The Matrix Cookbook**

by

**Kaare Brandt Petersen, Michael Syskind Pedersen**

The Matrix Cookbook is a free desktop reference on matrix identities, inequalities, approximations and relations useful for different fields such as machine learning, statistics, quantum mechanics, engeneering, chemistry.

(

**12390**views)

**Circulants**

by

**Alun Wyn-jones**

The goal of this book is to describe circulants in an algebraic context. It oscillates between the point of view of circulants as a commutative algebra, and the concrete point of view of circulants as matrices with emphasis on their determinants.

(

**8809**views)

**Random Matrix Theory, Interacting Particle Systems and Integrable Systems**

by

**Percy Deift, Peter Forrester (eds)**-

**Cambridge University Press**

Random matrix theory is at the intersection of linear algebra, probability theory and integrable systems, and has a wide range of applications. The book contains articles on random matrix theory such as integrability and free probability theory.

(

**869**views)