Stochastic Attribute-Value Grammars
by Rob Malouf, Miles Osborne
Publisher: ESSLLI 2001
Number of pages: 159
Description:
This one-week course will provide an introduction to the maximum entropy principle and the construction of maximum entropy models for natural language processing. Through a combination of lectures and, as local computing facilities permit, hands-on lab exercises, students will investigate the implementation of maximum entropy models for attribute-value grammars, including such topics as ambiguity identification, feature selection, and model training and evaluation.
Download or read it online for free here:
Download link
(1.8MB, PDF)
Similar books

by Shuly Wintner - ESSLLI
This text is a mild introduction to Formal Language Theory for students with little or no background in formal systems. The motivation is Natural Language Processing, and the presentation is geared towards NLP applications, with extensive examples.
(11406 views)

by Jon Barwise, John Etchemendy - Center for the Study of Language
The book covers the boolean connectives, formal proof techniques, quantifiers, basic set theory, induction, proofs of soundness and completeness for propositional and predicate logic, and an accessible sketch of Godel's first incompleteness theorem.
(21514 views)

by A. L. Berger, S. A. Della Pietra, V. J. Della Pietra - Association for Computational Linguistics
The authors describe a method for statistical modeling based on maximum entropy. They present a maximum-likelihood approach for automatically constructing maximum entropy models and describe how to implement this approach efficiently.
(10858 views)

by Daniƫl de Kok, Harm Brouwer
We will go into many of the techniques that so-called computational linguists use to analyze the structure of human language, and transform it into a form that computers work with. We chose Haskell as the main programming language for this book.
(17047 views)