**Quadratic Forms and Their Applications**

by Andrew Ranicki, et al.

**Publisher**: American Mathematical Society 2000**ISBN/ASIN**: 0821827790**ISBN-13**: 9780821827796**Number of pages**: 314

**Description**:

This volume outlines the proceedings of the conference on "Quadratic Forms and Their Applications" held at University College Dublin. It includes survey articles and research papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms and its history. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed.

Download or read it online for free here:

**Download link**

(2.7MB, PDF)

## Similar books

**Geometry and the Imagination**

by

**Conway, Doyle, Thurston**-

**Rutgers University, Newark**

These are notes from an experimental mathematics course entitled Geometry and the Imagination as developed by Conway, Doyle, Thurston and others. The course aims to convey the richness, diversity, connectedness, depth and pleasure of mathematics.

(

**4100**views)

**Modern Geometry**

by

**Robert Sharpley**-

**University of South Carolina**

This course is a study of modern geometry as a logical system based upon postulates and undefined terms. Projective geometry, theorems of Desargues and Pappus, transformation theory, affine geometry, Euclidean, non-Euclidean geometries, topology.

(

**11736**views)

**The Radon Transform**

by

**Sigurdur Helgason**-

**Birkhauser Boston**

The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications.

(

**12225**views)

**Convex Geometric Analysis**

by

**Keith Ball, Vitali Milman**-

**Cambridge University Press**

Convex bodies are at once simple and amazingly rich in structure. This collection involves researchers in classical convex geometry, geometric functional analysis, computational geometry, and related areas of harmonic analysis.

(

**11196**views)