Logo

P, NP, and NP-Completeness: The Basics of Complexity Theory

Large book cover: P, NP, and NP-Completeness: The Basics of Complexity Theory

P, NP, and NP-Completeness: The Basics of Complexity Theory
by

Publisher: Cambridge University Press
ISBN/ASIN: 0521122546
ISBN-13: 9780521122542
Number of pages: 190

Description:
The focus of this book is on the P-vs-NP Question, which is the most fundamental question of computer science, and on the theory of NP-completeness, which is its most influential theoretical discovery. The book also provides adequate preliminaries regarding computational problems and computational models.

Home page url

Download or read it online for free here:
Download link
(1.9MB, PS)

Similar books

Book cover: Algorithmic Randomness and ComplexityAlgorithmic Randomness and Complexity
by - Springer
Computability and complexity theory are two central areas of research in theoretical computer science. This book provides a systematic, technical development of algorithmic randomness and complexity for scientists from diverse fields.
(10881 views)
Book cover: Communication Complexity (for Algorithm Designers)Communication Complexity (for Algorithm Designers)
by - Stanford University
The two biggest goals of the course are: 1. Learn several canonical problems that have proved the most useful for proving lower bounds; 2. Learn how to reduce lower bounds for fundamental algorithmic problems to communication complexity lower bounds.
(6837 views)
Book cover: Foundations of CryptographyFoundations of Cryptography
by - Cambridge University Press
The book gives the mathematical underpinnings for cryptography; this includes one-way functions, pseudorandom generators, and zero-knowledge proofs. Throughout, definitions are complete and detailed; proofs are rigorous and given in full.
(17678 views)
Book cover: Measure-Preserving SystemsMeasure-Preserving Systems
by - University of North Carolina
These notes provide an introduction to the subject of measure-preserving dynamical systems, discussing the dynamical viewpoint; how and from where measure-preserving systems arise; the construction of measures and invariant measures; etc.
(11530 views)