**18 Lectures on K-Theory**

by Ioannis P. Zois

**Publisher**: arXiv 2010**Number of pages**: 137

**Description**:

We present 18 Introductory Lectures on K-Theory covering its basic three branches, namely topological, analytic (K-Homology) and Higher Algebraic K-Theory, 6 lectures on each branch. The skeleton of these notes was provided by the author's personal notes from a graduate summer school on K-Theory organised by the London Mathematical Society (LMS) back in 1995 in Lancaster, UK.

Download or read it online for free here:

**Download link**

(580KB, PDF)

## Similar books

**Algebraic K-Theory**

by

**Hyman Bass**-

**W. A. Benjamin**

The algebraic K-theory presented here is concerned with the structure theory of projective modules, and of their automorphism groups. Thus, it is a generalization off the theorem asserting the existence and uniqueness of bases for vector spaces ...

(

**1917**views)

**An Introduction to K-theory**

by

**Eric M. Friedlander**

The author's objective was to provide participants of the Algebraic K-theory Summer School an overview of various aspects of algebraic K-theory, with the intention of making these lectures accessible with little or no prior knowledge of the subject.

(

**6851**views)

**An Introduction to K-theory and Cyclic Cohomology**

by

**Jacek Brodzki**-

**arXiv**

An exposition of K-theory and cyclic cohomology. It begins with examples of various situations in which the K-functor of Grothendieck appears naturally, including the topological and algebraic K-theory, K-theory of C*-algebras, and K-homology.

(

**4894**views)

**The K-book: An introduction to algebraic K-theory**

by

**Charles Weibel**-

**Rutgers**

Algebraic K-theory is an important part of homological algebra. Contents: Projective Modules and Vector Bundles; The Grothendieck group K_0; K_1 and K_2 of a ring; Definitions of higher K-theory; The Fundamental Theorems of higher K-theory.

(

**6871**views)