Logo

Vector Analysis Notes by Matthew Hutton

Small book cover: Vector Analysis Notes

Vector Analysis Notes
by

Publisher: matthewhutton.com
Number of pages: 63

Description:
Contents: Introduction; The real thing; Line Integrals; Gradient Vector Fields; Surface Integrals; Divergence of Vector Fields; Gauss Divergence Theorem; Integration by Parts; Green's Theorem; Stokes Theorem; Spherical Coordinates; Complex Differentation; Complex power series; Holomorphic Functions; Complex Integration; Cauchy's theorem; Cauchy Integral Formula; Real Integrals; Power Series for holomorphic functions; Real Sums.

Home page url

Download or read it online for free here:
Download link
(1.4MB, PDF)

Similar books

Book cover: Calculus of Differential Forms: CourseCalculus of Differential Forms: Course
by - Intelligent Perception
This is a two-semester course in n-dimensional calculus. An emphasis is made on the coordinate free, vector analysis. Contents: Vector calculus; Continuous differential forms; Integration of differential forms; Manifolds and differential forms.
(2354 views)
Book cover: Vector CalculusVector Calculus
by - Schoolcraft College
A textbok on elementary multivariable calculus, the covered topics: vector algebra, lines, planes, surfaces, vector-valued functions, functions of 2 or 3 variables, partial derivatives, optimization, multiple, line and surface integrals.
(25561 views)
Book cover: Introduction to Vectors and Tensors Volume 2: Vector and Tensor AnalysisIntroduction to Vectors and Tensors Volume 2: Vector and Tensor Analysis
by
The textbook presents introductory concepts of vector and tensor analysis, suitable for a one-semester course. Volume II discusses Euclidean Manifolds followed by the analytical and geometrical aspects of vector and tensor fields.
(12388 views)
Book cover: The Geometry of Vector CalculusThe Geometry of Vector Calculus
by - Oregon State University
Contents: Chapter 1: Coordinates and Vectors; Chapter 2: Multiple Integrals; Chapter 3: Vector Integrals; Chapter 4: Partial Derivatives; Chapter 5: Gradient; Chapter 6: Other Vector Derivatives; Chapter 7: Power Series; Chapter 8: Delta Functions.
(5842 views)