Logo

Euclidean Random Matrices and Their Applications in Physics

Small book cover: Euclidean Random Matrices and Their Applications in Physics

Euclidean Random Matrices and Their Applications in Physics
by

Publisher: arXiv
Number of pages: 50

Description:
We review the state of the art of the theory of Euclidean random matrices, focusing on the density of their eigenvalues. Both Hermitian and non-Hermitian matrices are considered and links with simpler, standard random matrix ensembles are established. We discuss applications of Euclidean random matrices to contemporary problems in condensed matter physics, optics, and quantum chaos.

Home page url

Download or read it online for free here:
Download link
(6.8MB, PDF)

Similar books

Book cover: Harmonic Oscillators and Two-by-two Matrices in Symmetry Problems in PhysicsHarmonic Oscillators and Two-by-two Matrices in Symmetry Problems in Physics
by - MDPI AG
With a degree of exaggeration, modern physics is the physics of harmonic oscillators and two-by-two matrices. Indeed, they constitute the basic language for the symmetry problems in physics, and thus the main theme of this journal.
(571 views)
Book cover: Foundations Of Potential TheoryFoundations Of Potential Theory
by - Springer
The present volume gives a systematic treatment of potential functions. It has a purpose to serve as an introduction for students and to provide the reader with the fundamentals of the subject, so that he may proceed immediately to the applications.
(874 views)
Book cover: Little Magnetic BookLittle Magnetic Book
by - arXiv
'Little Magnetic Book' is devoted to the spectral analysis of the magnetic Laplacian in various geometric situations. In particular the influence of the geometry on the discrete spectrum is analysed in many asymptotic regimes.
(1697 views)
Book cover: Interactions, Strings and Isotopies in Higher Order Anisotropic SuperspacesInteractions, Strings and Isotopies in Higher Order Anisotropic Superspaces
by - arXiv
The monograph summarizes the author's results on the geometry of anholonomic and locally anisotropic interactions. The main subjects are in the theory of field interactions, strings and diffusion processes on spaces, superspaces and isospaces.
(6383 views)