Euclidean Random Matrices and Their Applications in Physics
by A. Goetschy, S.E. Skipetrov
Publisher: arXiv 2013
Number of pages: 50
Description:
We review the state of the art of the theory of Euclidean random matrices, focusing on the density of their eigenvalues. Both Hermitian and non-Hermitian matrices are considered and links with simpler, standard random matrix ensembles are established. We discuss applications of Euclidean random matrices to contemporary problems in condensed matter physics, optics, and quantum chaos.
Download or read it online for free here:
Download link
(6.8MB, PDF)
Similar books

by A. Pankov - Vinnitsa State Pedagogical University
Contents: Operators in Hilbert spaces; Spectral theorem of self-adjoint operators; Compact operators and the Hilbert-Schmidt theorem; Perturbation of discrete spectrum; Variational principles; One-dimensional Schroedinger operator; etc.
(10167 views)

by Pavel Bleher, Alexander Its - Cambridge University Press
The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.
(17868 views)

by Jean Claude Dutailly - arXiv
This is a comprehensive and precise coverage of the mathematical concepts and tools used in present theoretical physics: differential geometry, Lie groups, fiber bundles, Clifford algebra, differential operators, normed algebras, connections, etc.
(15195 views)

by Sergiu I. Vacaru - arXiv
The monograph summarizes the author's results on the geometry of anholonomic and locally anisotropic interactions. The main subjects are in the theory of field interactions, strings and diffusion processes on spaces, superspaces and isospaces.
(12213 views)