**Euclidean Random Matrices and Their Applications in Physics**

by A. Goetschy, S.E. Skipetrov

**Publisher**: arXiv 2013**Number of pages**: 50

**Description**:

We review the state of the art of the theory of Euclidean random matrices, focusing on the density of their eigenvalues. Both Hermitian and non-Hermitian matrices are considered and links with simpler, standard random matrix ensembles are established. We discuss applications of Euclidean random matrices to contemporary problems in condensed matter physics, optics, and quantum chaos.

Download or read it online for free here:

**Download link**

(6.8MB, PDF)

## Similar books

**LieART: A Mathematica Application for Lie Algebras and Representation Theory**

by

**Robert Feger, Thomas W. Kephart**-

**arXiv**

We present the Mathematica application LieART (Lie Algebras and Representation Theory) for computations in Lie Algebras and representation theory, such as tensor product decomposition and subalgebra branching of irreducible representations.

(

**5824**views)

**Lie Groups in Physics**

by

**G. 't Hooft, M. J. G. Veltman**-

**Utrecht University**

Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); etc.

(

**10459**views)

**An Introduction to Hyperbolic Analysis**

by

**Andrei Khrennikov, Gavriel Segre**-

**arXiv**

Contents: The hyperbolic algebra as a bidimensional Clifford algebra; Limits and series in the hyperbolic plane; The hyperbolic Euler formula; Analytic functions in the hyperbolic plane; Multivalued functions on the hyperbolic plane; etc.

(

**8348**views)

**Floer Homology, Gauge Theory, and Low Dimensional Topology**

by

**David Ellwood, at al.**-

**American Mathematical Society**

Mathematical gauge theory studies connections on principal bundles. The book provides an introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds.

(

**8696**views)