**Euclidean Random Matrices and Their Applications in Physics**

by A. Goetschy, S.E. Skipetrov

**Publisher**: arXiv 2013**Number of pages**: 50

**Description**:

We review the state of the art of the theory of Euclidean random matrices, focusing on the density of their eigenvalues. Both Hermitian and non-Hermitian matrices are considered and links with simpler, standard random matrix ensembles are established. We discuss applications of Euclidean random matrices to contemporary problems in condensed matter physics, optics, and quantum chaos.

Download or read it online for free here:

**Download link**

(6.8MB, PDF)

## Similar books

**Introduction to Mathematical Physics**

by

**Alex Madon**-

**Wikibooks**

The goal of this book is to propose an ensemble view of modern physics. The coherence between various fields of physics is insured by following two axes: a first is the universal mathematical language; the second is the study of the N body problem.

(

**3885**views)

**Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem**

by

**Peter B. Gilkey**-

**Publish or Perish Inc.**

This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas and the Gauss-Bonnet theorem.

(

**5265**views)

**Mathematical Physics II**

by

**Boris Dubrovin**-

**SISSA**

These are lecture notes on various topics in analytic theory of differential equations: Singular points of solutions to analytic differential equations; Monodromy of linear differential operators with rational coefficients.

(

**10418**views)

**Mathematics for Physics: A Guided Tour for Graduate Students**

by

**Michael Stone, Paul Goldbart**-

**Cambridge University Press**

This book provides a graduate-level introduction to the mathematics used in research in physics. It focuses on differential and integral equations, Fourier series, calculus of variations, differential geometry, topology and complex variables.

(

**12254**views)